Липиды и жирные кислоты. Липиды - что это такое? Липиды: функции, характеристика. Липиды в сырье и пищевых продуктах

Наравне с белками, углеводами и нуклеиновыми кислотами большое значение для всех живых организмов имеют также и липиды. Это органические соединения, выполняющие важные биологические функции. Поэтому постоянное пополнение организма ими просто необходимо для нормальной жизнедеятельности. Что же они представляют собой с точки зрения химии и какие липиды в клетке выполняют функции, узнаем из этой статьи.

Липиды: общее понятие

Если давать общую характеристику рассматриваемым соединениям, то можно сказать, что липиды - это сложные жироподобные молекулы, которые включают в свой состав гидрофильную и гидрофобную часть.

Проще говоря, все и животного происхождения, воски, холестерины, многие гормоны, терпены - это все липиды. Просто данным термином обозначают всю совокупность подобных по свойствам соединений. Все они - нерастворимые в воде, но растворимые в органических неполярных веществах соединения. На ощупь маслянистые.

Состав липидов с точки зрения химии достаточно сложный и зависит от того, о каком конкретно соединении идет речь. Поэтому данный вопрос рассмотрим отдельно.

Классификация

Распределить все липиды на группы можно по разным признакам. Одной из самых распространенных классификаций является основанная на способности молекул к гидролизу. По данной характеристике выделяют две большие группы органических жиров.

  1. Омыляемые - те, что подвергаются гидролизу и разлагаются на составные части. Примеры: воски, фосфолипиды, эфиры стеринов, нейтральные жиры.
  2. Неомыляемые - те, что гидролизу не подвергаются. К ним относятся терпены, стерины, жирорастворимые витамины (A, D, E, K), холестерин, эстрадиол, тестостерон и прочие.

Существует и другой признак классификации рассматриваемых веществ - количество входящих в состав компонентов. Так, выделяют:

  • двухкомпонентные, или простые (жиры и воски растений);
  • многокомпонентные, или сложные (фосфолипиды, гликолипиды, орнитинолипиды и прочие).

Вообще липиды в клетке выполняют функции очень важные, ведь они являются прямыми или косвенными участниками всех жизненно необходимых процессов. Поэтому разнообразие их очень велико.

Состав липидов

С химической точки зрения в состав молекулы жироподобных веществ входят два основных компонента:

  • гидрофобная составляющая;
  • гидрофильная.

Так как липидов очень много, то и примеров обеих частей также немало. Для понимания химического состава соединения приведем примеры.

Какие соединения являются гидрофобными составляющими молекул липидов?

  1. Высшие жирные кислоты (ВЖК).
  2. Высшие спирты.
  3. Высшие альдегиды.

Гидрофильные компоненты молекул следующие:

  • глицерин;
  • аминодиолы;
  • углеводы;
  • фосфорная и серная кислоты;
  • аминоспирты;
  • аминокислоты.

Различные сочетания перечисленных компонентов, удерживающиеся друг возле друга за счет ионных, ковалентных взаимодействий, сил электростатического притяжения и водородных связей, формируют все многообразие маслянистых, нерастворимых в воде соединений, известных под общим названием липиды.

Строение и свойства

Свойства липидов объясняются их химическим строением. Так, если в состав входит непредельная высшая и глицерин, то жир будет проявлять характерные особенности кислоты и спирта трехатомного. Если в составе альдегид, значит, реакции будут те, что характерны для кето-группы.

Поэтому взаимосвязь свойств и химического строения молекулы совершенно очевидна. Единственные общие для всех видов жиров характеристики - это:

  • растворимость в бензоле, гексане, хлороформе и других неполярных растворителях;
  • жирность или маслянистость на ощупь.

Преобразование в клетке

Те липиды, которые выполняют в организме функцию запасного питательного вещества, источника энергии, относятся к нейтральным жирам. По классификации рассматриваемых веществ это будут смеси триацилглицеринов. Гидрофобные, нерастворимые в воде, неполярные соединения, представляющие собой образование из глицерина и трех молекул высших карбоновых кислот.

Именно эти липиды и подвергаются обработке в клетках живых организмов. Что это за преобразования? Это процесс гидролиза специальными ферментами, именуемыми липазами. В результате полного расщепления образуется молекула глицерина и жирные кислоты. Они затем снова с током крови поступают в клетки и подвергаются дальнейшей переработке - происходит синтез липидов в клетке, уже иного строения.

Существует несколько высших жирных кислот, которые являются незаменимыми для человека, так как самостоятельно в клетках не образуются. Это:

  • олеиновая;
  • линолевая;
  • линоленовая.

Для нормального поддержания уровня липидов необходимо употреблять продукты, богатые этими кислотами: мясо, рыба, яйцо, мясо птицы, зелень, орехи, творог и прочие, зерновые.

Роль липидов в клетке

Каково же значение жиров для организма? Липиды в клетке выполняют функции:

  • резервно-энергетическую;
  • структурную;
  • сигнальную;
  • защитную.

Каждая из них крайне важна для поддержания нормальной жизнедеятельности каждого живого существа.

Особенное значение имеют те, что образованы непредельными кислотами, так как они незаменимы. Они участвуют в образовании особых молекул простагландинов, которые, в свою очередь, являются регуляторами многих процессов. Также именно свойства липидов этой группы позволяют нейтрализовать холестерин и предотвратить развитие атеросклероза.

Резервно-энергетическая и структурная функция

Триацилглицерины или - это основной источник энергии для многих внутренних органов (печени, почек, мышц). При расщеплении 1 грамма липидов высвобождается 9,3 ккал тепла, что значительно превышает соответствующий показатель при распаде углеводов и белков.

Поэтому в момент голодания для организма жиры - это источник жизненных сил и энергии. Липиды в клетке выполняют функции структурные, так как входят в состав мембран клеток. Это такие молекулы, как:

  • гликолипиды;
  • фосфолипиды;
  • холестерол.

Такой липид, как фосфатидилхолин является обязательным структурным звеном клеток печени. Поэтому резервная функция жиров - это их запасание в отдельных частях организма. Энергетическая - это расщепление в случае необходимости с высвобождением энергии. А структурная заключается в том, что именно из липидов строятся некоторые звенья клеток и тканей.

Сигнальная и защитная

Сигнальная функция липидов заключается в том, что многие из них являются переносчиками важных сигналов из клетки и внутрь нее. Это такие жиры, как:

  • фосфатидилинозитол;
  • эйкозаноиды;
  • гликолипиды.

Они связываются с гормонами и обеспечивают быструю в клетку и из нее. Также жиры обеспечивают регуляции многих функций, которые осуществляемых клетками.

Защитная роль липидов заключается в том, что масса подкожного жира обеспечивает термо- и теплоизоляцию, а также механическую защиту внутренних органов от повреждений. У человека (женщин) главная концентрация жира во время беременности - область живота. Что также является приспособлением для защиты плода от ударов, столкновений и прочих воздействий.

Кроме того, фосфолипиды выполняют важную роль, активируя белки и гормоны, работающие при свертывании крови. Так как этот процесс также является защитным приспособлением организма, то и функция жиров в этом случае такая же.

Липиды – совокупность органических веществ. Находящиеся в живых организмах и делятся на классы липидов. Липиды не растворимы в воде, но могут растворится в эфире, хлорофоре и бензоле. В строении и функции липидов входят множество химических соединений, они обладают функцией запасов энергии. Стероиды и Фосфо липиды входят в , другие липиды, которых немного меньше, могут быть коферментами, переносчиками электронов, свето поглощающими пигментами, гормонами, гидрофобными «якорями» которые содержат белки у мембран.

Организм человека имеет свойства расщеплению липидов, хотя многие из этих веществ обязаны поступать в организм, это (омега-3, омега-6)

Группы липидов

Липиды разделяются на простые и сложные. В простые входят эфиры жирных кислот, в сложные липиды кроме жирных кислот и спирта содержат в себе углеводороды, фосфатные, липопротеиды и прочие. Каждая группа обозначается двумя английскими буквами:

Глицерофосфолипиды (GP)

Глицеролипиды (GL)

Поликетиды (PK).

Сфинголипиды (SP);

Стероидные липиды (ST)

Пренольни липиды (PR);

Жирные кислоты (FA)

Сахаролипиды (SL);

Химический состав липидов

Гликолипиды

Гликолипиды - это класс липидов, содержащих остатки моно- или олигосахаридов. Они могут быть как производными глицерина, так и сфингозина.

(ТГ) Ацилглицериды-глицериды, это эфиры трехатомного спирта и жирных кислот. Гидроксильные классы в малекуле делятся еще на группы:

  1. триглицериды
  2. диглицериды
  3. моноглицериды

Самые распространенные это триглицериды. Их так же называют жиры. Жиры бывают простыми содержащими в себе жирные кислоты, но чаще встречаются смешанные жиры, они так же содержат жирные кислоты. Свойства триглицеридов зависят от его жирнокислотного состава, например, чем больше ненасыщенных кислот, тем больше у них температура плавления. Взять в пример масла, оно содержит в себе почти 95 % ненасыщенных жирных кислот и при комнатной температуре оно тает. Животные жиры в пример сало, при комнатной температуре сохраняют массу, по этому у них все с точностью до наоборот (содержание насыщенных жирных кислот)

Глицерофосфолипиды

Формула глицерофосфолипидов это R1 и R2 жирных кислот, Х это остаток вещества азтмисноя. Глицерофосфолипиды по другому называют фосфоглицериды, они производятфосфатидные кислоты, которые в свою очередь состоят из глицерина . В нем в первую и вторую группу входят R1, R2, а в третью фосфатные кислоты, к нему уже присоединяется радикал Х (азото содержащий)

Жирные кислоты образуют в молекуле гидрофобную часть глицерофосфолипидов. Фосфатная часть в нейтральной среде несет в себе отрицательный заряд, а азотосодержащие соединения, несут положительный разряд, в азотосодержащей среде может быть отрицательно заряженный, по этому ее иногда называют полярной. В водной среде фосфоглицерины вырабатывают мицеллы, головы их повернуты на ружу, а хвостики внутрь.

Распространненые мембраны фосфоглицеридамы – летицин, в нем радикал Х является остатком холина и фосфатидилэтаноламина. Так же есть еще безазотистые глицерофосфолипиды, в него входят Х, инозитол и спирт. Двойные фосфоглицериды были обнаружены во внутренней мембране митохондрии. У животных эфирные липиды обогащают сердце, так же к этой группе соединений относят активные вещества активации тромбоцитов .

Глицерогликолипиды


Глицерогликолипиды – это класс диацилглицеролив атома углерода к которому присоединен гликозильмин. Самым распространенным классом липидов является галактолипиды, в них содержатся остатки галактозы. Они составляют 80% липидов мембран. Вместе с галактолипидами в растительных мембранах можно встретить остаток глюкозы

Сфингогликолипиды


Цереброзидов - это сфингогликолипиды, гидрофильная часть которых представлена остатком моносахарида, обычно глюкозы или галактозы. Галактоцереброзиды распространены в мембранах нейронов.

Глобозиды - олигосахаридных производные церамидов. Вместе с цереброзидов их называют нейтральными гликолипидами, поскольку при pH 7 они незаряженные.

Ганглиозиды - сложные с гликолипидов, их гидрофильная часть представлена олигосахариды, на конце которого всегда находится один или несколько остатков N-ацетилнейраминовои (сиаловой) кислоты, через что они кислотные свойства. Ганглиозиды наиболее распространенные в мембранах ганглионарных нейронов.

Сфингофосфолипиды


Структурная формула сфингомиелина в часть ее составляющей входят церамида которая содержит в себе длинноцепочковые аминоспирты и 1 остаток жирной кислоты, гидрофильного радикала, он в свою очередь соединен с сфингозином. встречается в мембранных клетках, но самой богатой считается нервная ткань. Так же большое их содержания находится в аксонах, от туда и произошло их названия.

Фосфолипиды

Структурные классы липидов это фосфолипиды, общем признаком фосфолипидов это их амфифильность, а она имеет гидрофильную и гидрофобную часть. По этому Они могут образовывать в водной среде мицеллы и би слои.

Стероиды


Стероид это класс природных липидов, в его состав входит циклопентан пергидрофенантреновое ядро. К ним относят спирты с гидроксильным классом в 3-ем положении стеролы с жировыми кислотами – стеридами. У зверей самым распространенным из стеролов это холестерол, что так же входит в состав мембран.

Стероиды выполняют множество функций у различных организмов. Для Половых гормонов, надпочечников , витаминные функции и прочие.

Глава II. ЛИПИДЫ

§ 4. КЛАССИФИКАЦИЯ И ФУНКЦИИ ЛИПИДОВ

Липиды представляют собой неоднородную группу химических соединений, нерастворимых в воде, но хорошо растворимых в неполярных органических растворителях: хлороформе, эфире, ацетоне, бензоле и др., т.е. общим их свойством является гидрофобность (гидро – вода, фобия – боязнь). Из-за большого разнообразия липидов дать более точное определение им невозможно. Липиды в большинстве случаев являются сложными эфирами жирных кислот и какого-либо спирта. Выделяют следующие классы липидов: триацилглицерины, или жиры, фосфолипиды, гликолипиды, стероиды, воска, терпены. Различают две категории липидов – омыляемые и неомыляемые. К омыляемым относятся вещества, содержащие сложноэфирную связь (воска, триацилглицерины, фосфолипиды и др.). К неомыляемым относятся стероиды, терпены.

Триацилглицерины, или жиры

Триацилглицерины являются сложными эфирами трехатомного спирта глицерина

и жирных (высших карбоновых) кислот. Общая формула жирных кислот имеет вид: R-COOH, где R – углеводородный радикал. Природные жирные кислоты содержат от 4 до 24 атомов углерода. В качестве примера приведем формулу одной из наиболее распространенной в жирах стеариновой кислоты:

CH 3 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -COOH

В общем виде молекулу триацилгицерина можно записать так:

Если в состав триациоглицерина входят остатки различных кислот (R 1 R 2 R 3), то центральный атом углерода в остатке глицерина становится хиральным.

Триацилглицерины неполярны и вследствие этого практически нерастворимы в воде. Основная функция триацилглицеринов – запасание энергии. При окислении1 гжира выделяется 39 кДж энергии. Триацилглицерины накапливаются в жировой ткани, которая, кроме депонирования жира, выполняет термоизолирующую функцию и защищает органы от механических повреждений. Более подробную информацию о жирах и жирных кислотах вы найдете в следующем параграфе.

Интересно знать! Жир, которым заполнен горб верблюда, служит, в первую очередь, не источником энергии, а источником воды, образующейся при его окислении.


Фосфолипиды

Фосфолипиды содержат гидрофобную и гидрофильную области и поэтому обладают амфифильнымы свойствами, т.е. они способны растворяться в неполярных растворителях и образовывать стойкие эмульсии с водой.

Фосфолипиды в зависимости от наличия в их составе спиртов глицерина и сфингозина делятся на глицерофосфолипиды и сфингофосфолипиды .

Глицерофосфолипиды

В основе строения молекулы глицерофосфолипидов лежит фосфатидная кислота, образованная глицерином, двумя жирными и фосфорной кислотами:

В молекулах глицерофосфолипидов к фосфатидной кислоте сложноэфирной связью присоединена НО-содержащая полярная молекула. Формулу глицерофосфолипидов можно представить так:

где Х – остаток НО-содержащей полярной молекулы (полярная группировка). Названия фосфолипидов образуются в зависимости от наличия в их составе той или иной полярной группировки. Глицерофосфолипиды, содержащие в качестве полярной группировки остаток этаноламина,

HO-CH 2 -CH 2 -NH 2

носят название фосфатидилэтаноламинов, остаток холина

– фосфатидилхолинов, серина

– фосфатидилсеринов.

Формула фосфатидилэтаноламина выглядит так:

Глицерофосфолипиды отличаются друг от друга не только полярными группами, но и остатками жирных кислот. В их состав входят как насыщенные (состоящие обычно из 16 – 18 атомов углерода), так и ненасыщенные (содержащие чаще 16 – 18 атомов углерода и 1 – 4 двойные связи) жирные кислоты.

Сфингофосфолипиды

Сфингофосфолипиды по составу сходны с глицерофосфолипидами, но вместо глицерина содержат аминоспирт сфингозин:

или дигидросфингазин:

Наиболее распространенными сфингофосфолипидами являются сфингомиелины. Они образованы сфингозином, холином, жирной кислотой и фосфорной кислотой:

Молекулы как глицерофосфолипидов, так и сфингофосфолипидов состоят из полярной головы (образована фосфорной кислотой и полярной группировкой) и двух углеводородных неполярных хвостов (рис.1). У глицерофосфолипидов оба неполярных хвоста являются радикалами жирных кислот, у сфингофосфолипидов – один хвост является радикалом жирной кислоты, другой – углеводородной цепочкой спирта сфингазина.

Рис. 1. Схематическое изображение молекулы фосфолипида.

При встряхивании в воде фосфолипиды спонтанно формируют мицеллы , в которых неполярные хвосты собираются внутри частицы, а полярные головы располагаются на ее поверхности, взаимодействуя с молекулами воды (рис. 2а). Фосфолипиды способны образовывать также бислои (рис. 2б) и липосомы – замкнутые пузырьки, окруженные непрерывным бислоем (рис. 2в).

Рис. 2. Структуры, образуемые фосфолипидами.

Способность фосфолипидов, образовывать бислой, лежит в основе формирования клеточных мембран.

Гликолипиды

Гликолипиды содержат в своем составе углеводный компонент. К ним относятся гликосфинголипиды, содержащие, кроме углевода спирт, сфингозин и остаток жирной кислоты:

Они так же, как и фосфолипиды, состоят из полярной головы и двух неполярных хвостов. Гликолипиды располагаются на внешнем слое мембраны, являются составной частью рецепторов, обеспечивают взаимодействие клеток. Их особенно много в нервной ткани.

Стероиды

Стероиды являются производными циклопентанпергидрофенантрена (рис. 3). Один из важнейших представителей стероидов – холестерин . В организме он встречается как в свободном состоянии, так и в связанном, образуя сложные эфиры с жирными кислотами (рис. 3). В свободном виде холестерин входит в состав мембран и липопротеинов крови. Сложные эфиры холестерина являются его запасной формой. Холестерин является предшественником всех остальных стероидов: половых гормонов (тестостерон, эстрадиол и др.), гормонов коры надпочечников (кортикостерон и др.), желчных кислот (дезоксихолевая и др.), витамина D (рис. 3).

Интересно знать! В организме взрослого человека содержится около 140 г холестерина, больше всего его находится в нервной ткани и надпочечниках. Ежедневно в организм человека поступает 0,3 – 0,5 г холестерина, а синтезируется – до 1 г.

Воска

Воска – это сложные эфиры, образованные длинноцепочечными жирными кислотами (число атомов углерода 14 – 36) и длинноцепочечными одноатомными спиртами (число атомов углерода 16 – 22). В качестве примера рассмотрим формулу воска, образованного олеиновым спиртом и олеиновой кислотой:

Воска выполняют главным образом защитную функцию, находясь на поверхности листьев, стеблей, плодов, семян они защищают ткани от высыхания и проникновения микробов. Они покрывают шерсть и перья животных и птиц, предохраняя их от намокания. Пчелиный воск служит строительным материалом для пчел при создании сот. У планктона воск служит основной формой запасания энергии.

Терпены

В основе терпеновых соединений лежат изопреновые остатки:

К терпенам относятся эфирные масла, смоляные кислоты, каучук, каротины, витамин А, сквален. В качестве примера приведем формулу сквалена:

Сквален является основным компонентом секрета сальных желез.

Что такое липиды, какова классификация липидов, в чем состоит их строение и функции? Ответ на этот и многие другие вопросы дает биохимия, занимающаяся изучением этих и других веществ, имеющих большое значение для метаболизма.

Что это такое

Липиды представляют собой органические вещества, нерастворяемые в воде. Функции липидов в теле человека многообразны.

Липиды — это слово означает «мелкие частички жира»

Это прежде всего:

  • Энергетическая. Липиды служат субстратом для запасания и использования энергии. При расщеплении 1 грамма жиров выделяется примерно в 2 раза больше энергии, чем при расщеплении белка или углеводов такого же веса.
  • Структурная функция. Структура липидов определяет строение мембран клеток нашего тела. Они располагаются таким образом, что гидрофильная часть молекулы находится внутри клетки, а гидрофобная ─ на ее поверхности. Благодаря этим свойствам липидов каждая клетка, с одной стороны, представляет собой автономную систему, отгороженную от внешнего мира, а с другой ─ каждая клетка может обмениваться молекулами с другими и с окружающей средой с помощью специальных транспортных систем.
  • Защитная. Поверхностный слой, что имеется у нас на коже и служит своеобразным барьером между нами и окружающим миром также составлен из липидов. Кроме того, они в составе жировой ткани обеспечивают функцию теплоизоляции и защиту от пагубных внешних воздействий.
  • Регуляторная. Они входят в состав витаминов, гормонов и других веществ, регулирующих многие процессы в организме.

Общая характеристика липидов исходит из особенностей строения. Они обладают двоякими свойствами, так как имеют в составе молекулы растворимую и нерастворимую части.

Поступление в организм

Липиды частично поступают в организм человека с пищей, частично способны синтезироваться эндогенно. Расщепление основной части пищевых липидов происходит в 12-перстной кишке под воздействием панкреатического сока, выделяемого поджелудочной железой и желчных кислот в составе желчи. Расщепившись, они ресинтезируются вновь в кишечной стенке и, уже в составе специальных транспортных частиц ─ липопротеинов, ─ готовы поступить в лимфатическую систему и общий кровоток.

С пищей ежедневно человеку необходимо получать около 50-100 граммов жиров, что зависит от состояния организма и уровня физической активности.

Классификация

Классификация липидов в зависимости от их способности образовывать мыла в определенных условиях разделяет их на следующие классы липидов:

  • Омыляемые. Так называются вещества, которые в среде с щелочной реакцией образуют соли карбокислот (мыла). В эту группу относятся простые липиды, сложные липиды. Как простые липиды, так и сложные важны организму, они имеют разное строение и, соответственно ему, липиды выполняют разные функции.
  • Неомыляемые. В щелочной среде не образуют солей карбоновых кислот. Сюда биологическая химия относит жирные кислоты, производные полиненасыщенных жирных кислот ─ эйкозаноиды, холестерин, как наиболее яркий представитель основного класса стеринов-липидов, а также производные его ─ стероиды и некоторые другие вещества, например, витамины А, Е и др.

Общая классификация липидов

Жирные кислоты

Веществами, которые относятся к группе так называемых простых липидов и имеют большое значение для организма являются жирные кислоты. В зависимости от наличия двойных связей в неполярном (нерастворимом в воде) углеродном «хвосте», жирные кислоты делят на насыщенные (двойных связей не имеют) и ненасыщенные (имеют одну или даже больше двойных углерод-углеродных связей). Примеры первых: стеариновая, пальмитиновая. Примеры ненасыщенных и полиненасыщенных жирных кислот: олеиновая, линолевая и др.

Именно ненасыщенные жирные кислоты особенно важны для нас и должны обязательно поступать с пищей.

Почему? Потому что они:

  • Служат компонентом для синтеза клеточных мембран, участвуют в образовании многих биологически активных молекул.
  • Помогают поддерживать работу эндокринной и половой систем в норме.
  • Помогают предупредить или замедлить развитие атеросклероза и многих его последствий.

Жирные кислоты делятся на две большие группы: ненасыщенные и насыщенные

Медиаторы воспаления и не только

Еще одним видом простых липидов являются такие важные медиаторы внутренней регуляции, как эйкозаноиды. Они имеют уникальное (как практически все в биологии) химическое строение и, соответственно этому, уникальные химические свойства. Главной основой для синтеза эйкозаноидов выступает арахидоновая кислота, которая является одной из важнейших ненасыщенных жирных кислот. Именно эйкозаноиды отвечают в организме за течение воспалительных процессов.

Кратко описать их роль в воспалении можно следующим образом:

  • Они изменяют проницаемость сосудистой стенки (а именно ─ повышают ее проницаемость).
  • Стимулируют выход лейкоцитов и других клеток иммунной системы в ткани.
  • С помощью химических веществ опосредуют перемещения клеток иммунитета, выброс ферментов и поглощение чужеродных для организма частиц.

Но на этом роль эйкозаноидов в теле человека не заканчивается, они также ответственны за систему свертывания крови. В зависимости от складывающейся ситуации эйкозаноиды могут расширить сосуды, расслабить гладкую мускулатуру, уменьшить агрегацию или, если потребуется, вызвать обратные эффекты: сужение сосудов, сокращение гладких мышечных клеток и тромбообразование.

Эйкозаноиды – обширная группа физиологически и фармакологически активных соединений

Проводились исследования, согласно которым, люди, в достаточном количестве получавшие главный субстрат синтеза эйкозаноидов ─ арахидоновую кислоту ─ с пищей (находится в рыбьем жире, рыбе, растительных маслах) меньше страдали от заболеваний сердечно-сосудистой системы. Вероятнее всего, это связано с тем, что такие люди имеют более совершенный обмен эйкозаноидов.

Вещества сложного строения

Сложные липиды ─ группа веществ, не менее важная для организма, чем простые липиды. Основные свойства этой группы жиров:

  • Участвуют в образовании клеточных мембран, наряду с простыми липидами, а также обеспечивают межклеточные взаимодействия.
  • Входят в состав миелиновой оболочки нервных волокон, необходимой для нормальной передачи нервного импульса.
  • Они являются одним из важных компонентов сурфактанта ─ вещества, обеспечивающего процессы дыхания, а именно предотвращающего спадание альвеол во время выдоха.
  • Многие из них играют роль рецепторов на поверхности клеток.
  • Значение некоторых сложных жиров, выделяемых из спинномозговой жидкости, нервной ткани, сердечной мышцы до конца не выяснена.

К простейшим представителям липидов этой группы относятся фосфолипиды, глико- и сфинголипиды.

Холестерин

Холестерин является веществом липидной природы с наиболее важным значением в медицине, так как нарушение именно его обмена негативно сказывается на состоянии всего организма.

Часть холестерина поступает внутрь с пищей, а часть ─ синтезируется в печени, надпочечниках, половых железах и коже.

Он также участвует в образовании клеточных мембран, синтезе гормонов и других химически активных веществ, а также участвует в метаболизме липидов в теле человека. Показатели именно холестерина в крови часто исследуются врачами, так как они показывают состояние обмена липидов в организме человека в целом.

Липиды имеют свои особые транспортные формы ─ липопротеины. С их помощью они могут переноситься с током крови, не вызывая эмболии.

Нарушения жирового обмена быстрее и ярче всего проявляются нарушениями обмена холестерина, преобладанием атерогенных его переносчиков (так называются липопротеины низкой и очень низкой плотности) над антиатерогенными (липопротеины с высокой плотностью).

Основным проявлением патологии липидного обмена является развитие атеросклероза.

Проявляет он себя сужением просвета артериальных сосудов по всему организму. В зависимости от преобладания в сосудах различных локализаций развивается сужение просвета коронарных сосудов (сопровождающееся стенокардией), сосудов головного мозга (с нарушениями запоминания, слуха, возможными головными болями, шумом в голове), сосудов почек, сосудов нижних конечностей, сосудов органов пищеварения с соответствующей симптоматикой.

Таким образом, липиды одновременно являются незаменимым субстратом для многих процессов в организме и, в то же время, при нарушении жирового обмена, могут стать причиной многих заболеваний и патологических состояний. Поэтому, жировой обмен требует за собой контроля и коррекции при возникновении такой необходимости.

Помимо деления на простые и сложные, липиды можно подразделить на омыляемые и неомыляемые.

Классификация липидов позволяет разобраться с нюансами участия данных микроэлементов во множестве биологических процессов жизнедеятельности человека. Биохимия и строение каждого подобного вещества, входящего в состав клеток, по-прежнему вызывают немало споров среди ученых и экспериментаторов.

Липиды, как известно, – природные соединения, включающие в свой состав различные жиры. Отличием данных веществ от других представителей указанной органической группы является то, что они практически не утилизируются в воде. Будучи активными эфирами кислот с высоким уровнем жирности, они не способны полностью самоустраниться с помощью растворителей неорганического типа.

Липиды имеются в организме каждого человека. Их доля достигает в среднем 10-15% от всего тела. Значение липидов невозможно недооценить: они служат прямым поставщиком жирных ненасыщенных кислот. Извне внутрь организма вещества поступают с витамином F, который крайне важен для полноценной работы пищеварительной системы.

Кроме того, липид – это скрытый ресурс жидкости в человеческом теле. Окисляясь, 100 г жиров способны образовать 106 г воды. Одним из главных предназначений данных элементов является выполнение функции естественного растворителя. Именно благодаря ей в кишечнике происходит беспрерывная абсорбция ценных жирных кислот и витаминов, растворяющихся в органических растворителях. Почти половина всей массы головного мозга принадлежит липидам. В составе остальных тканей и органов их число также велико. В прослойках подкожно-жировой клетчатки может находиться до 90% всех липидов.

Основные виды липидных соединений

Биохимия жировых органических веществ и их строение предопределяют классовые различия. Таблица позволяет наглядно продемонстрировать, какими бывают липиды.

Каждое жиросодержащее вещество относится к одной из двух категорий липидов:

  • омыляемых;
  • неомыляемых.

Если соли кислот с высокой жирностью были образованы посредством гидролиза с использованием щелочи, может возникать омыление. При этом мылами называют калиевые и натриевые соли. Омыляемые вещества представляют собой наибольшую группу липидов.

В свою очередь, группу омыляемых элементов можно условно разделить на две группы:

  • простые (состоящие только из атомов кислорода, углекислого газа и водорода);
  • сложные (представляют собой простые соединения в сочетании с фосфорными основаниями, остатками глицерина или двухтомного ненасыщенного сфингозина).

Простые липиды

К типу простых липидов биохимия относит различные жирные кислоты и спиртовые эфиры. Среди последних веществ самыми распространенными являются холестерин (так называемый циклический спирт), глицерин и олеиновый спирт.

Одним из сложных эфиров глицерина можно назвать триациглицерин, который состоит из нескольких молекул кислот высокой жирности. По сути, простые соединения представляют собой часть аподоцитов жировых тканей. Стоит отметить также, что сложные эфирные контакты с жирными кислотами могут возникать сразу в трех точках, поскольку глицерин является трехатомным спиртом. В этом случае и возникают соединения, образованные из вышеупомянутой связи:

  • триацилглицериды;
  • диацилглицериды;
  • моноацилглицериды.

Преимущественная часть данных жиров нейтрального типа присутствует в организме у животных теплокровных. В их структуре находится большая часть остатков пальмитиновой, стеариновой кислот высокой жирности. Кроме того, нейтральные жиры в одних тканях по своему содержимому могут существенно отличаться от жиров других органов в пределах одного и того же организма. К примеру, подкожная клетчатка человека обогащена такими кислотами на порядок выше, чем печень, состоящая из ненасыщенных жиров.

Нейтральные жиры

Оба вида кислот, вне зависимости от насыщенности, относятся к виду алифатических карбоновых. Биохимия позволяет понять, насколько важны эти вещества для липидов, сравнивая микроэлементы со строительными блоками. Благодаря им выстраивается каждый липид.
Если говорить о первом типе, о насыщенных кислотах, то в организме человека чаще всего можно встретить пальмитиновую и стеариновую кислоты. Намного реже в биохимических процессах участвует лигноцериновая, строение которой является более сложным (24 углеродных атома). При этом, в липидах у животных насыщенные кислоты, имеющие в своем составе менее 10 атомов, практически отсутствуют.

Самым распространенным атомным набором ненасыщенных кислот являются соединения, состоящие из 18 атомов углерода. Незаменимыми считают следующие виды ненасыщенных кислот, обладающих от 1 до 4 двойных связей:

  • олеиновая;
  • линолевая;
  • линоленовая;
  • арахидоновая.

Простагландиды и воски

В большей или меньшей степени все они обладают в организме млекопитающих. Огромное значение имеют производные кислот ненасыщенного типа, которыми являются простагландиды. Синтезируемые всеми клетками и тканями, кроме эритроцитов, они оказывают колоссальное действие на функционирование главных структур и процессов человеческого организма:

  • систему кровообращения и сердце;
  • метаболизм и обмен электролитами;
  • центральную и периферическую нервные системы;
  • органы пищеварения;
  • репродуктивную функцию.

В отдельной группе находятся эфиры сложных кислот и спиртов с одним или двумя атомами в цепочке – воски. Общее число углеродных частиц у них может достигать 22. Благодаря твердой текстуре данные вещества воспринимаются липидами в качестве протекторов. Среди природных восков, синтезирующихся организмами, чаще всего встречаются пчелиный, ланолин и элемент, покрывающий поверхность листьев.

Сложные липиды

Классы липидов представлены группами сложных соединений. Биохимия к ним относит:

  • фосфолипиды;
  • гликолипиды;
  • сульфолипиды.

Фосфолипиды являются биологическими конструкциями, имеющими сложное строение. В их состав обязательно входит фосфор, азотистые соединения, спирты и многое другое. Для организма они играют весомую роль, являясь основополагающей составляющей строительного процесса биологических мембран. Фосфолипиды присутствуют в сердце, печени и головном мозге.

К подклассу сложных липидов относятся также гликолипиды – это соединения, в составе которого имеется сфингозиновый спирт, а значит, и углеводы. В большей степени, чем какие-либо другие ткани в организме, нервные оболочки богаты гликолипидами.

Разновидностью гликолипидов, содержащих остатки серной кислоты, считаются сульфолипиды. Между тем, классификация липидов всегда подразумевает выделение данных веществ в отдельную группу. Основное различие между двумя сложными соединениями заключается в особенностях их структуры. На месте галактозы третьего атома углерода у гликолипида располагается остаток серной кислоты.

Группа неомыляемых липидов

В отличие от внушительной по числу разновидностей группы омыляемых липидов, неомыляемые полностью высвобождают жирные кислоты и не проходят гидролизацию путем щелочного воздействия. Такие вещества бывают двух типов:

  • высшие спирты;
  • высшие углеводороды.

К первой категории относятся витамины, отличающиеся жирорастворимыми качествами – А, Е, D. Самым известным представителем второго типа стеринов – высших спиртов – является холестерин. Выделить элемент из желчных камней путем выделения одноатомного спирта ученым удалось еще несколько веков назад.

Холестерин невозможно обнаружить у растений, в то время, как в организме млекопитающих он присутствует абсолютно во всех клетках. Его наличие является важным условием полноценного функционирования пищеварительной, гормональной и мочеполовой систем.

Рассматривая высшие углеводороды, которые также являются неомыляемыми веществами, важно обратиться к определению, которое дает биохимия. Указанные элементы с научной точки зрения представляют собой компоненты, продуцируемые изопреном. Молекулярное строение углеводородов основано на объединении частиц изопрена.

Как правило, указанные элементы присутствуют в растительных клетках особо душистых видов. Кроме того, известный всем натуральный каучук – политерпен – относят к группе неомыляемых высших углеводородов.