Строение и функции стромы яичника. Значение слова строма Защитную функции 3 строма а


Опухоли построены из паренхимы и стромы. Паренхима опухоли - это собственно опухолевые клетки, образовавшиеся в результате злокачественной трансформации клетки-предшественницы и ее клональной пролиферации.

Структура опухолевой клетки

Структурные изменения затрагивают все компоненты опухолевой клетки - ядро, цитоплазму, мембраны, органеллы и цитоскелетон. Это называется морфологическим атипизмом опухоли.

Ядра опухолевых клеток. Как правило, ядра опухолевых клеток увеличены, полиморфны, их контуры изрезаны, структура изменена. Ядро имеет неупорядоченно расположенный хроматин с конденсацией его в виде глыбок под кариолеммой. При этом увеличивается относительное содержание гетерохроматина, содержащего неактивную ДНК, по сравнению с эухроматином, построенным из активно работающей ДНК. Уменьшение содержания активно работающей ДНК, а следовательно, и активно работающих генов в опухолевой клетке отражает тот факт, что в функциональном отношении опухолевая клетка очень примитив на, требует генетического и метаболического обеспечения в основном процессов роста и размножения. Размеры ядра увеличиваются за счет нарушения процессов эндоредупликации ДНК, полиплоидии, эндомитозов, увеличения хромосом в ряде новообразований. В ядрах могут обнаруживаться разнообразные включения: вирусные частицы, внутриядерные тельца, тубулярные структуры, пузырьки, выросты, карманы ядерной мембраны.

Наблюдаются также изменения ядрышек - увеличение их размеров, количества, появление "персистирующих" ядрышек, не исчезающих во время митозов, увеличение размеров ядрышкового организатора, в котором сконцентрирована ядрышковая ДНК, кодирующая рибосомальную РНК. Поэтому изменения данной ультраструктуры происходят параллельно с изменениями белоксинтетической функции клетки.

Ядерная мембрана опухолевых клеток бедна ядерными порами, что затрудняет транспортные связи между ядром и цитоплазмой.

Описанные структурные изменения ядер опухолевых клеток сочетаются с хромосомными и генными перестройками: хромосомными аберрациями (количественными и качественными изменениями хромосом), генными мутациями с нарушением процессов репарации ДНК, активацией протоонкогенов и супрессией или потерей генов-супрессоров опухолевого роста. Хромосомные аберрации представлены потерей или избытком каких-либо хромосом, появлением кольцевидных хромосом, транслокацией, делецией и редупликацией хромосом.

Классическим примером реципрокной транслокации хромосом с активацией при этом протоонкогенов являются лимфома Беркитта и хронический миелолейкоз. Делеция, или нетранскрипционная перестройка характеризуется потерей генетического материала. Примером служит делеция в хромосоме 11, при опухоли почек Вильмса и в хромосоме 13 при ретинобластоме. В ретинобластоме при этом происходит потеря антионкогена Rb. При лейкозах описаны делеции хромосом, опережающие на несколько лет развитие лейкоза. Редупликация хромосом часто сочетается с процессами транслокации и делеции. При хроническом миелолейкозе, помимо маркерного признака в виде филадельфийской хромосомы, например в стадии обострения, нередко наблюдается также полисомия по хромосомам 8, 17 и 19.

Увеличение частоты неоплазм с возрастом связывают с накоплением в соматических клетках мутаций и с возрастной дерепрессией репарации ДНК.

Цитоплазма, органеллы и цитоплазматическая мембрана опухолевых клеток. Поверхность опухолевых клеток отличается увеличенной складчатостью, появлением микровыростов, пузырьков, а в ряде опухолей и микроворсинок различной конфигурации и плотности. Полагают, что в области микроворсинок обычно концентрируются рецепторы, способны воспринимать канцерогенные агенты. Эндоплазматическая сеть в опухолевых клетках может быть развита в разной степени, что отражает белоксинтетическую функцию. Усиление анаэробного гликолиза сопровождается уменьшением в опухолевых клетках количества митохондрий, а также появлением крупных и гигантских митохондрий с нарушенной ориентацией крист. В то же время имеется небольшое количество типов опухолей с высоким содержанием митохондрий в цитоплазме (онкоцитомы, зернисто-клеточный, почечно-клеточный рак).

Особенности цитоскелетона опухолевой клетки обусловлены неупорядоченностью расположения его компонентов. Микротрубочки образуют перинуклеарную сеть, а микрофиламенты в виде, пучков обычно локализуются под цитолеммой. Перестройки в цитоскелетоне нарушают работу интегриновых рецепторов и адгезивных молекул, что отражается на изменениях в межклеточных взаимодействиях, обеспечивает процессы инвазивного роста и метастазирования.

Строма опухоли

Второй важный структурный компонент опухоли - ее строма. Строма в опухоли, так же как и строма в нормальной ткани, в основном выполняет трофическую, модулирующую и опорную функции. Стромальные элементы опухоли представлены клетками и экстрацеллюлярным матриксом соединительной ткани, сосудами и нервными окончаниями. Экстрацеллюлярный матрикс опухолей представлен двумя структурными компонентами: ба-зальными мембранами и интерстициальной соединительной тканью. В состав базальных мембран входят коллагены IV, VI и VII типов, гликопротеиды (ламинин, фибронектин, витронектин), протеогликаны (гепаран-сульфат и др.). Интерстициальная соединительная ткань опухоли содержит коллагены I и III типов, фибронектин, протеогликаны и гликозаминогликаны.

Происхождение стромы опухоли. В настоящее время получены убедительные экспериментальные данные о возникновении клеточных элементов стромы опухолей из предсуществующих нормальных соединительнотканных предшественников окружающей опухоль ткани. J.Folkman (197I) показал, что клетки злокачественных опухолей продуцируют некий фактор, стимулирующий пролиферацию элементов соосудистой стенки и рост сосудов. Это сложное вещество белковой природы впоследствии было названо фактором Фолькмана. Как затем было установлено, фактор Фолькмана представляет собой группу факторов роста фибробластов, которых уже известно более 7. Фолькман первым доказал, что стромообразование в опухоли является результатом сложных взаимодействий опухолевой клетки и клеток соединительной ткани.

Важную роль в стромообразовании в неоплазме выполняют соединительнотканные клетки как местного, гистиогенного, так и гематогенного происхождения. Стромальные клетки продуцируют разнообразные факторы роста, стимулирующие пролиферацию клеток мезенхимного происхождения (факторы роста фибробластов, фактор роста тромбоцитов,ФНО-а, фибронектин, инсулиноподобные факторы роста и др.), некоторые онкобелки (c-sic, c-myc), одновременно экспрессируют рецепторы, связывающие факторы роста и онкобелки, что позволяет стимулировать их пролиферацию как по аутокринному, так и по паракринному пути. Кроме того, сами клетки стромы способны выделять разнообразные протеолитические ферменты, приводящие к деградации экстрацеллюлярный матрикс.

Опухолевые клетки активно участвуют в образовании стромы. Во-первых, трансформированные клетки стимулируют пролиферацию соединительнотканных клеток по паракринному регуляторному механизму, продуцируют факторы роста и онкобелки. Во-вторых, они способны стимулировать синтез и секрецию соединительнотканными клетками компонентов экстрацеллю-лярного матрикса. В-третьих, сами опухолевые клетки способны секретировать определенные компоненты экстрацсллюлярного матрикса. Причем определенный тип таких компонентов имеет характерный состав в некоторых опухолях, что можно использовать при их дифференциальной диагностике. В-четвертых, опухолевые клетки продуцируют ферменты (коллагеназы и др.), их ингибиторы и активаторы, способствующие или, напротив, препятствующие инфильтрирующему и инвазивному росту злокачественных опухолей. Динамическое равновесие между коллагеназами, их активаторами и ингибиторами обеспечивает стабильное состояние опухоли и препятствует прорастанию ее в прилежащие ткани. В момент роста опухолевые клетки активно синтезируют коллагеназы, эластазы и их ингибиторы.

Таким образом, образование стромы в опухоли является сложным многостадийным процессом, основными ступенями которого можно считать следующие:

Секреция опухолевыми клетками митогенных цитокинов - различных факторов роста и онкобелков, стимулирующих пролиферацию соединительнотканных клеток, прежде всего эндотелия, фибробластов, миофибробластов и гладких мышечных клеток;

Синтез опухолевыми клетками некоторых компонентов экстрацеллюлярного матрикса - коллагенов, ламинина фибронектина и др.;

Пролиферация и дифференцировка клеток-предшественниц соединительнотканного происхождения, секреция ими компонентов экстрацеллюлярного матрикса и формирование тонкостенных сосудов капиллярного типа, что в совокупности и составляет строму опухоли;

Миграция в строму опухоли клеток гематогенного происхождения - моноцитов, плазмоцитов, лимфоидных элементов, тучных клеток и др.

Злокачественные опухоли часто формируют строму, в которой доминирует тип коллагена стромы соответствующего органа на стадии эмбрионального развития. Так, в строме рака легкого преобладающим типом коллагена является коллаген III, характерный для эмбрионального легкого. Разные опухоли могут отличаться по составу коллагенов стромы. В карциномах, как правило, доминируют коллагены III типа (рак легкого), IV типа (почечноклеточный рак и нефробластомы). В саркомах - интерстициальные коллагены, но в хондросаркоме - коллаген II типа, в синовиальной саркоме - достаточно много коллагена IV типа. Описанные различия в композиции стромы особенно важно учитывать при дифференциальной диагностике сарком.

Аигиогеиез в опухоли. Рост опухолей зависит от степени развитости в них сосудистой сети. В новообразованиях диаметром менее 1-2 мм питательные вещества и кислород поступают из тканевой жидкости окружающих тканей путем диффузии. Для питания же более крупных новообразований необходима васкуляризация их ткани.

Ангиогенез в опухоли обеспечивается группой ангиогенных факторов роста, некоторые из которых могут генерироваться также активированными эпителиальными клетками в очагах хронического воспаления и регенерации. Группа ангиогенных факторов опухоли включает в себя факторы роста фибробластов, эндотелия, ангиогенин, фактор роста кератиноцитов, эпи-дермоидный фактор роста, фактор роста сосудов глиомы, некоторые колониестимулирующие костномозговые факторы и др.

Наряду с факторами роста в ангиогенезе имеет большое значение состав экстрацеллюлярного матрикса стромы опухоли. Благоприятным является содержание в нем компонентов базальных мембран - ламинина, фибронектина и коллагена IV типа. Формирование сосудов в опухолях происходит на фоне извращенной митогенетической стимуляции в измененном экстрацеллюлярном матриксе. Это приводит к развитию неполноценных сосудов преимущественно капиллярного типа, имеющих нередко прерывистую базальную мембрану и нарушенную эндотелиальную выстилку. Эндотелий может замещаться опухолевыми клетками, а иногда и вовсе отсутствовать.

Роль стромы. Для опухоли роль стромы не ограничивается только трофическими и опорными функциями. Строма оказывает модифицирующее влияние на поведение опухолевых клеток, т.е. регулирует пролиферацию, дифференцировку опухолевых клеток, возможность инвазивного роста и метастазирования. Мо дифицирующее воздействие стромы на опухоль осуществляется благодаря наличию на клеточных мембранах опухолевых клеток интегриновых рецепторов и адгезивных молекул, способных передавать сигналы на элементы цитоскелетона и дальше в ядро опухолевой клетки.

Интегриновые рецепторы - класс гликопротеидов, расположенных трансмембранно, внутренние концы которых связаны с элементами цитоскелетона, а наружный, внеклеточный, способен взаимодействовать с трипептидом субстрата Arg - Gly - Asp. Каждый рецептор состоит из двух субъединиц - альфа и бета, имеющих множество разновидностей. Разнообразие сочетаний субъединиц обеспечивает разнообразие и специфичность интегриновых рецепторов. Интегриновые рецепторы в опухолях подразделяются на межклеточные и интегриновые рецепторы между опухолевыми клетками и компонентами экстрацеллюлярного матрикса - ламининовые, фибронектиновые, витронектиновые, к различным типам коллагенов, гиалуронатовые (к адгезивным молекулам семейства CD44). Интегриновые рецепторы обеспечивают межклеточные взаимодействия между опухолевыми клетками, а также с клетками и экстрацеллюлирным матриксом стромы. В конечном итоге интегриновые рецепторы определяют способность опухоли к инвазивному росту и метастазированию.

Адгезивные молекулы САМ (от англ. cell adhesiv molecules) - другой важный компонент клеточных мембран опухолевых клеток, обеспечивающий их взаимодействие между собой и со стромальными компонентами. Они представлены семействами NCAM, LCAM, N-кадгерином, CD44. При опухолевой трансформации происходит изменение структуры и экспрессии адгезивных молекул, входящих в состав клеточных мембран, что приводит к нарушению взаимосвязи опухолевых клеток, а следовательно, инвазивному росту и метастазированию.

В зависимости от развитости стромы опухоли подразделяют на органоидные и гистиоидные.

В органоидных опухолях имеются паренхима и развитая строма. Примером органоидных опухолей могут служить различные опухоли из эпителия. При этом степень развитости стромы может также варьировать от узких редких фиброзных прослоек и сосудов капиллярного типа в медуллярном раке до мощных полей фиброзной ткани, в которой эпителиальные опухолевые цепочки едва бывают различимыми, в фиброзном раке, или скирре.

В гистиоидных опухолях доминирует паренхима, строма практически отсутствует, так как представлена лишь тонкостенными сосудами капиллярного типа, необходимыми для питания. По гистиоидному типу построены опухоли из собственной соединительной ткани и некоторые другие неоплазмы.

Характер роста опухолей по отношению к окружающим тканям бывает экспансивным с формированием соединительнотканной капсулы и оттеснением прилежащих сохранных тканей, а также инфильтрирующим и инвазивным с прорастанием прилежащих тканей.

В полых органах выделяют также два типа роста в зависимости от отношения опухоли к их просвету: экзофшпный при росте опухоли в просвет, и эндофитный - при росте опухоли в стенку органа.

В зависимости о т количества узлов первичной опухоли неоплазмы могут обладать уницентрическим или мультицентрическим характером роста.

 СТРОМА (от греч. stroma-подстилка), понятие, обозначающее поддерживающие или опорные структуры органа. В этом отношении понятие С. как бы противополагается понятию паренхимы (см.). Обычно С. состоит из капсулы, одевающей орган снаружи, и трабекул, отходящих от нее внутрь органа и образующих как бы скелет органа. С. построена из плотной соединительной ткани, богатой эластическими волокнами и часто содержащей гладкие мышечные волокна (см. Паренхима). -С т р о м а клетки. Этим термином обозначаются структурные образования, определяющие или фиксирующие форму клетки. Поскольку агрегатное состояние протоплазмы жидкое, клетка под влиянием сил поверхностного натяжения всегда должна была бы иметь шарообразную форму. В случае, если клетка обладает нек-рой постоянной формой, отличной от шарообразной, и эта форма не зависит от контакта клетки с соседними тканевыми элементами (клетками или межклеточными образованиями), а определяется собственными, присущими данной клетке свойствами, то наличие таковой формы предполагает существование каких-либо внешних или внутренних скелетных образований, т. е. стромы, придающей клетке специфическую форму. Наружные скелетные образования представлены пеликуло й-плазматической оболочкой, являющейся наружным слоем протоплазмы, подвергшейся переходу в гель. Внешняя пеликула может быть укреплена внутренними скелетными частями, включейными в нее. Чем плотнее, толще и тверже наружный слой клетки, тем сильнее он стабилизирует форму клетки. Кроме пеликулы, наружной статической органеллой клетки может быть мембрана, напр. сарколема мышечного волокна, являющаяся тоже коллоидной модификацией поверхностного слоя цитоплазмы и отличающаяся от пеликулы большей толщиной, плотностью, двуконтурностью, а также тем, что она резко отграничивается от цитоплазмы. Плотная оболочка, развивающаяся на одной стороне клетки, называется кутикулой. Иногда жидкая по своей цитоплазме клетка независимо от наличия или отсутствия пеликулы фиксирует свою специфическую форму помощью внутреннего скелета из тончайших ригидных фибрил. Фибрилы эти, обычно отчетливо заметные в живой клетке благодаря сильному светопреломлению, надо рассматривать как желатинизированные части протоплазмы (тонофибрилы М. Heidenhain"a), обладающие наряду с ригидностью большой упругостью и эластичностью. Тонофибрилы хорошо развиты в эпителии кожи, где, переходя из клетки в клетку по межклеточным мостикам, образуют пружинящие системы, придающие эпидермису большую ригидность. Особенно сильно развиты опорные фибрилы у инфузорий, где они часто образуют сложные системы, придающие телу инфузории сложную и причудливую форму. Исследуя головки спермиев различных животных, Н. К. Кольцов обнаружил, что своеобразная форма этих клеток определяется наличием скелетных опорных нитей. Обобщая свои наблюдения, Кольцов пришел к заключению, что все клетки в том или ином виде имеют твердый скелет. Опорные фибрилы идут обычно по периферии клетки, одиночно или пучками, иногда переходя из одной клетки в соседние, не прерываясь. Скелетные фибрилы образуют равным образом основу мерцательных ресничек или жгутиков. Последние построены из тонкой осевой упругой нити, одетой слоем протоплазмы. В клетках ресничного эпителия скелетные фибрилы, помимо осей ресничек, образуют еще внутри протоплазмы т. н. внутриклеточный нитчатый аппарат (Faserwurzeln), состоящий из сходящихся к ядру в виде конуса тонких фибрил. Подобное же строение (осевая скелетная нить, одетая слоем протоплазмы) имеют хвостики сперматозоидов. Кроме опорных тонофибрил известны еще фибрилярные образования, к-рым приписывается определенная физиол. функция (миофибрилы, неврофибрилы). Однако этим не исключается возможность для них одновременно выполнять статическую функцию опоры для содержащей их клетки.---О строме ядра можно говорить лишь по отношению к фиксированным и окрашенным ядрам, т. к. живое ядро в огромном большинстве случаев оптически пусто и никаких структур не обнаруживает. После фиксации (особенно сулемовыми смесями) в ядре обнаруживается б. или м. густая сеть, носящая название линина или ахроматина и рассматриваемая обычно как С. ядра. В узлах этой сети при фиксации выпадают глыбки хроматина. В патологии понятие С. и паренхимы особенно часто употребляется в учении об опухолях (см.). Лит.: Г а р тм ан М., Общая биология, ч. 1,тл. II- Статика, стр. 84-106, М.-Л., 1929; Кольцов Н., Исследования о спермиях десятиногих раков в связи с общими соображениями относительно организации клетки, М., 1905; Hertwig G., Strukturen, welclie die Form der Zelle bestimmen und erhalten (Statik der Zelle) (Hndb. d. mikroskopischen Anatomie, hrsg. v. W. Mollendorff, B. I, T. 1, Кар. VІI, p. 329, В., 1929); Studnicka Г., Die Organisation der lebendigen Masse, die Grenzschichten der Zellen (ibid,).Б. Алешин.

Многих женщин, изучающих строение половых органов, интересует вопрос, что такое строма яичников. В значении этого термина пытаются разобраться и те, у кого обнаружено заболевание, связанное с данным элементом яичников. Строма яичника это соединительная ткань, в состав которой входят кровеносные сосуды, обеспечивающие подачу необходимых для работы фолликулов веществ. На сегодняшний день единого мнения среди ученых о том, из каких тканей состоит данная оболочка, нет.

Строение стромальной оболочки

Некоторые ученые считают, что данный элемент состоит из рыхлой волокнистой соединительной ткани, клеточными элементами которой выступают фиброциты и фибробласты. Кроме того, в составе вещества находятся пучки гладких мышечных клеток, тучные клетки и определенное количество лейкоцитов, имеющих разную форму. Согласно данным других исследователей, строма яичника представлена полигональными и веретенообразными клетками. Последние отличаются скудной цитоплазмой и имеют много общего с фибробластами, погруженными в волокнистые сети с разным числом коллагена. Полигональные клетки имеют эозинофильную цитоплазму. Этот функциональный слой включает стероидопродуцирующие клетки с большим количеством липидных элементов. Есть также ученые, разделяющие стромальные ткани по стероидогенному и фибробластическому типу.

Существует мнение, что клетки этого элемента придатков, которые вырабатывают стероидные гормоны, состоят из атретических фолликулов, завершивших свое существование. Они образуются на стадии, когда от фолликула остается лишь базальная мембрана. Рядом с соединительной тканью сохраняются отдельные стероидопродуцирующие клетки, которые принадлежат этому фолликулу.

Обратите внимание: Оболочка считается гормонально зависимой. Самостоятельно она не способна обеспечить полноценное развитие находящихся в ней фолликулов. Дело в том, что в области первичных овариальных фолликуллов, которые располагаются в поверхностной части коркового вещества стромы, практически отсутствуют кровеносные сосуды. В более глубоких слоях преобладающим веществом элемента выступает аморфное вещество. Здесь коллагеновая соединительная ткань замещается эластичной, что приводит к появлению большого количества лаброцитов. Последние отвечают за проникновение сосудов к фолликулярным клеткам.

Присутствует в этом элементе придатков и мышечная оболочка, части которой расположены виде функциональных групп, направленных в разные стороны. Согласно мнению некоторых исследователей, гладкомышечные клетки отвечают за перемещение овариальных фолликулов, начавших расти, в более глубокие слои. В определенные дни менструального цикла, когда происходит овуляция, данные мышечные клетки активно участвуют в разрыве фолликулярной стенки.

Возрастные изменения

Строма отыгрывает важную функцию в работе придатков на протяжении всех возрастных периодов женщины. Эта соединительная ткань полностью формируется приблизительно до двадцатилетнего возраста. Меняется структура яичников и, соответственно, стромальных тканей, также в течение менструального цикла. Это связано с началом роста новых фолликулярных клеток и тканей, за гемообеспечение которых отвечает строма. Если в организме женщины происходят изменения эндокринного характера, наиболее выражено их последствия сказываются на стромальных капиллярах и контактирующих с ними текоцитах.

В период с 20 до 30 лет морфология и функции придатков меняются, что приводит к очаговому разрастанию коллагеновых волокон. Приблизительно к тридцати годам у большинства пациенток начинается процесс постепенного фиброза стромы, наряду с изменением коркового вещества. Такие процессы вызваны сменой женских половых гормонов. Все это вызывает перемены в структуре элементов яичника и влияет на его функции.

Важно! С возрастом самые заметные изменения происходят в крупных артериях. Оболочка стромального элемента к тридцати годам начинает постепенно утолщаться. В мозговом слое образуется большое количество фолликулов. Все это нередко приводит к поликистозу. Утолщение стромы может наблюдаться не только у женщин, приближающихся к этапу менопаузы, но и у молодых девушек детородного возраста, которые страдают от хронического аднексита или ановуляторных состояний.

К 50-60 годам у многих женщин происходит склероз стромы, иногда очаговый гиалиноз. Органы женской половой системы в пожилом возрасте полностью атрофируются. Это же происходит и со стромальной оболочкой.

Заболевания, связанные с оболочкой

Хотя площадь стромальной ткани является небольшой, данный элемент отыгрывает важную роль во многих процессах, происходящих в женском организме. В нормальном состоянии этот элемент придатков в любые дни цикла на УЗИ имеет среднюю эхогенность. По цвету он сравним с оттенком тела матки. В оболочке наблюдается умеренное число сосудов. Если ее эхогенность повышена, просматривается большое количество сосудов, а стенка стромы выглядит увеличенной, стоит говорить о наличие патологии. Чаще всего это свидетельствует о поликистозе или течении воспалительных процессов.

С патологическим изменением оболочки яичников связаны такие заболевания:

  • поликистоз;
  • гиперплазия яичников;
  • стромальная гиперплазия и гипертекоз;
  • стромальноклеточные опухоли.

Согласно последним исследованиям, именно утолщение стромального слоя чаще всего становится причиной поликистоза. В данном случае фолликул развивается нормально, однако, когда приходит время выхода яйцеклетки, толстые стромальные стенки не позволяют этому произойти. В результате фолликулярные клетки формируют кистозные тела. Их количество после овуляции, которая должна была произойти в каждом цикле, увеличивается. Утолщение стромы чаще всего является следствием гормонального дисбаланса, при котором преобладает повышение лютеинизирующего гормона. ЛГ, в свою очередь, влияет на чрезмерное выделение стероидных гормонов в оболочке яичников. В данном случае эхогенность стромального слоя превышает эхогенность миометрия. Если проводится гистологическое исследование, наблюдается разрастание рыхлой и коллагеновой соединительной ткани этого элемента придатков. Чаще всего ткань располагается неравномерно.

Еще одно заболевание, вызванное изменением оболочки яичника – гиперплазия. В данном случае изменениям подвергаются стромальные ткани яичников, в которых присутствуют признаки пролиферации, лютеинизации, повышенной выработки андрогенов. Данное гинекологическое заболевание сопровождается разрастанием оболочки яичника и стромы эндометрия. При этом яичник увеличивается в объеме. Причиной процессов может оказаться гормональный дисбаланс в женской половой системе, перенесенное гинекологическое заболевание или врожденная патология. Без надлежащего лечения гиперплазия приводит к текоматозу тканей, что может завершиться формированием опухоли.

Нередким заболеванием считается и гиперплазия стромы. Считается, что такое заболевание вызывает длительная стимуляция стромальных желез лютеинизирующим гормоном в период перименопаузы. Эта патология является менее опасной для женского здоровья, чем стромальный гипертекоз, при котором оболочка яичников разрастается из-за лютеинизации и пролиферации. В данном случае наблюдается повышение в крови мужских гормонов.

Стромальноклеточные опухоли чаще всего достигают больших размеров. Они формируются из специализированной стромальной оболочки полового тяжа гонад. Такие опухоли способны развиваться из первичных клеток женского или мужского типа. В зависимости от этого, образуются гранулезно-текаклеточные новообразования или опухоли Сертоли-Лейдинга. Данные патологические новообразования считаются функционирующими, так как их продуцируют гормоны. Стромальные опухоли могут формироваться в разном возрасте, в том числе у детей и подростков, а также в период постменопаузы. Изначально стромальные опухоли практически во всех случаях являются доброкачественными, однако, с возрастом они имеют свойство перерастать в злокачественные образования. Их лечение и хирургическое устранение требуется только при вероятности трансформации опухоли в раковое новообразование, либо при наличии жалоб и дискомфорта.

Строма строма - stroma

Русско-английский словарь биологических терминов. - Новосибирск: Институт Клинической Иммунологии . В.И. Селедцов . 1993-1999 .

Синонимы :

Смотреть что такое "строма" в других словарях:

    - (от греч. stroma подстилка) в биологии основная опорная структура органов, тканей и клеток животных и растений. Напр., соединительнотканная строма желез, белковая основа эритроцитов и пластид, сплетение гиф у многих сумчатых грибов … Большой Энциклопедический словарь

    - (от греч. stroma подстилка), в биологии основная опорная структура органов, тканей и клеток животных и растений. Напр., соединительно тканная строма желез, белковая основа эритроцитов и пластид, сплетение гиф у многих сумчатых грибов … Энциклопедический словарь

    Структура, основа Словарь русских синонимов. строма сущ., кол во синонимов: 2 основа (56) структура … Словарь синонимов

    - (от греч. stroma подстилка, ковёр), основа органов животных, состоящая из неоформленной соединит, ткани. В С. располагаются специфич. элементы органов, проходят кровеносные и лимфатич. сосуды, содержатся волокнистые структуры, обусловливающие её… … Биологический энциклопедический словарь

    СТРОМА - (от греч. stroma подстилка), понятие, обозначающее поддерживающие или опорные структуры органа. В этом отношении понятие С. как бы противополагается понятию паренхимы (см.). Обычно С. состоит из капсулы, одевающей орган снаружи, и трабекул,… … Большая медицинская энциклопедия

    СТРОМА - (stroma) соединительнотканный каркас, основа органа, поддерживающий его функциональную (рабочую) ткань (паренхима (parenchyma)). Например, строма эритроцитов представляет собой пористую основу нитей белка внутри красной клетки крови, внутри… … Толковый словарь по медицине

    - (гр. stroma подстилка) биол. 1) основа (или остов) органа животного, состоящая из неоформленной соединительной ткани, в которой находятся способные к размножению и развитию клетки, а также волокнистые структуры, обеспечивающие опорную функцию… … Словарь иностранных слов русского языка

    Stroma строма. Cоединительнотканный мягкий остов многих органов, а также опухолей; кроме того, С. белковый матрикс митохондрий и хлоропластов . (Источник: «Англо русский толковый словарь генетических… … Молекулярная биология и генетика. Толковый словарь.

    - (stroma; греч. stroma подстилка) соединительнотканная опорная структура органа или опухоли … Большой медицинский словарь

    - (от греч. stroma подстилка) (биологическая), 1) основа (или остов) органа животного организма, состоящая из неоформленной соединительной ткани, в которой расположены специфические элементы органа, имеются способные к размножению клетки, а … Большая советская энциклопедия

    Для улучшения этой статьи желательно?: Дополнить статью (статья слишком короткая либо содержит лишь словарное определение). Добавить иллюстрации. Найти и оформить в виде сносок ссылки на авто … Википедия

Например, соединительнотканная строма желез, белковая основа эритроцитов.

Состоит из соединительнотканной стромы с развитыми лимфатическими и кровеносными сосудами и паренхимы из эпителиальных клеток, расположенных отдельными ячейками.

Развитие начинается с атипического размножения эпителиальных клеток, разрушающих собственную соединительную оболочку и образующих отдельные скопления раковых клеток и разрастание соединительнотканной стромы .

Стенки наших мочевых пузырей были перерастянуты настолько, что мышечная ткань уплостилась до очевидностей паутины, и вся жидкость держалась вместе только за счет отчаянного напряжения соединительнотканной стромы , да небольшого участка висцеральной брюшины.

Маленькая планетка приняла то, что осталось от Строма после разговора с Председателем.

Компьютер действительно моделировал личность Строма , мыслил по тому же алгоритму и, допуская промахи в трактовке тактической линии поведения, правильно предугадывал стратегию.

А вокруг Строма сплотился своего рода мозговой центр — физики, математики, футурологи.

Теперь же испытывал радость: по предложению Строма ввели показатель общественной активности — мерило душевного здоровья общества, и он увеличивался с каждым днем.

Сплотившийся вокруг Строма коллектив инженеров и ученых сейчас, в отсутствие Борга, требовал со стороны Строма отеческой заботы.

Большое из малого Смерть Строма обрушилась на Игина, как внезапный обвал.

Я, и только я, виноват в смерти Строма , — сказал он во время первой встречи.

Поздно, одними губами прошептал Мэт, и они собрали свои вещи под бдительными взглядами Хейка, Строма и Джака.

Мэт то и дело посматривал на Хейка, на Строма , на Джака, нисколько не заботясь, замечают ли они его взгляды и не начнут ли они соображать, с чего бы это им такое внимание.

Лишь лампа, которую нес в руке Хейк и свет которой обрамлял силуэты Джака и Строма , придала Ранду смелости шагнуть в коридор.

Будь уверена, — ответил юдаллер, — что скорее соглашусь есть гнилые водоросли, как это делают скворцы, или соленую тюленину, как жители Баррафорта, или ракушки и слизняков, как несчастные бедняки Стромы , чем преломлю пшеничный хлеб и выпью красного вина в доме, где мне отказали в гостеприимстве.

Контакты

СТРОМА

СТРОМА (от греч. stroma-подстилка), понятие, обозначающее поддерживающие или опорные структуры органа. В этом отношении понятие С. как бы противополагается понятию паренхимы (см.). Обычно С.

состоит из капсулы, одевающей орган снаружи, и трабекул, отходящих от нее внутрь органа и образующих как бы скелет органа. С. построена из плотной соединительной ткани, богатой эластическими волокнами и часто содержащей гладкие мышечные волокна (см. Паренхима). -С т р о м а клетки.

Этим термином обозначаются структурные образования, определяющие или фиксирующие форму клетки. Поскольку агрегатное состояние протоплазмы жидкое, клетка под влиянием сил поверхностного натяжения всегда должна была бы иметь шарообразную форму. В случае, если клетка обладает нек-рой постоянной формой, отличной от шарообразной, и эта форма не зависит от контакта клетки с соседними тканевыми элементами (клетками или межклеточными образованиями), а определяется собственными, присущими данной клетке свойствами, то наличие таковой формы предполагает существование каких-либо внешних или внутренних скелетных образований, т.

е. стромы, придающей клетке специфическую форму. Наружные скелетные образования представлены пеликуло й-плазматической оболочкой, являющейся наружным слоем протоплазмы, подвергшейся переходу в гель. Внешняя пеликула может быть укреплена внутренними скелетными частями, включейными в нее. Чем плотнее, толще и тверже наружный слой клетки, тем сильнее он стабилизирует форму клетки. Кроме пеликулы, наружной статической органеллой клетки может быть мембрана, напр.

сарколема мышечного волокна, являющаяся тоже коллоидной модификацией поверхностного слоя цитоплазмы и отличающаяся от пеликулы большей толщиной, плотностью, двуконтурностью, а также тем, что она резко отграничивается от цитоплазмы. Плотная оболочка, развивающаяся на одной стороне клетки, называется кутикулой. Иногда жидкая по своей цитоплазме клетка независимо от наличия или отсутствия пеликулы фиксирует свою специфическую форму помощью внутреннего скелета из тончайших ригидных фибрил.

Фибрилы эти, обычно отчетливо заметные в живой клетке благодаря сильному светопреломлению, надо рассматривать как желатинизированные части протоплазмы (тонофибрилы М. Heidenhain’a), обладающие наряду с ригидностью большой упругостью и эластичностью. Тонофибрилы хорошо развиты в эпителии кожи, где, переходя из клетки в клетку по межклеточным мостикам, образуют пружинящие системы, придающие эпидермису большую ригидность.

Особенно сильно развиты опорные фибрилы у инфузорий, где они часто образуют сложные системы, придающие телу инфузории сложную и причудливую форму. Исследуя головки спермиев различных животных, Н. К. Кольцов обнаружил, что своеобразная форма этих клеток определяется наличием скелетных опорных нитей.

Обобщая свои наблюдения, Кольцов пришел к заключению, что все клетки в том или ином виде имеют твердый скелет. Опорные фибрилы идут обычно по периферии клетки, одиночно или пучками, иногда переходя из одной клетки в соседние, не прерываясь. Скелетные фибрилы образуют равным образом основу мерцательных ресничек или жгутиков.

Последние построены из тонкой осевой упругой нити, одетой слоем протоплазмы. В клетках ресничного эпителия скелетные фибрилы, помимо осей ресничек, образуют еще внутри протоплазмы т.

н. внутриклеточный нитчатый аппарат (Faserwurzeln), состоящий из сходящихся к ядру в виде конуса тонких фибрил. Подобное же строение (осевая скелетная нить, одетая слоем протоплазмы) имеют хвостики сперматозоидов. Кроме опорных тонофибрил известны еще фибрилярные образования, к-рым приписывается определенная физиол.

функция (миофибрилы, неврофибрилы). Однако этим не исключается возможность для них одновременно выполнять статическую функцию опоры для содержащей их клетки.---О строме ядра можно говорить лишь по отношению к фиксированным и окрашенным ядрам, т.

к. живое ядро в огромном большинстве случаев оптически пусто и никаких структур не обнаруживает. После фиксации (особенно сулемовыми смесями) в ядре обнаруживается б. или м. густая сеть, носящая название линина или ахроматина и рассматриваемая обычно как С. ядра. В узлах этой сети при фиксации выпадают глыбки хроматина.

В патологии понятие С. и паренхимы особенно часто употребляется в учении об опухолях (см.). Лит.: Г а р тм ан М., Общая биология, ч. 1,тл.

Строма как вид соединительной ткани

II- Статика, стр. 84-106, М.-Л., 1929; Кольцов Н., Исследования о спермиях десятиногих раков в связи с общими соображениями относительно организации клетки, М., 1905; Hertwig G., Strukturen, welclie die Form der Zelle bestimmen und erhalten (Statik der Zelle) (Hndb. d. mikroskopischen Anatomie, hrsg.

v. W. Mollendorff, B. I, T. 1, Кар. VІI, p. 329, В., 1929); Studnicka Г., Die Organisation der lebendigen Masse, die Grenzschichten der Zellen (ibid,). Б. Алешин. Смотрите также:

  • СТРОНГИЛОИДОЗ (ангвилюлез, ангиостомоз), глистное заболевание человека и нек-рых других млекопитающих, равно как и птиц, вызываемое нематодой рода Strongyloides Grassi, 1879, относящейся к подотряду Rhabdiasata и семейству Rhabdiasidae.

    Род Strongyloides включает целый …

  • СТРОНЦИЙ , Strontium, Sr, щелочноземельный металл II группы Менделеевской системы, порядковый номер 38, ат. в. 87,63. Встречается в природе в виде целестина’-SrS04, стронцианита-SrC03 и др. Соли С. как по способам их …
  • СТРОФАНТ , Strophanthus hispidus D. С. и Strophanthus Kombe-Oliver, кустарниковое растение, сем. кутровых (Аросупасеае). Насчитывается свыше 28 отдельных видов С. От них получают семена, идущие для мед.

    целей. Растет гл. обр. …

  • STROPHULUS , см. Prurigo.
  • СТРУМА (от лат. struma-желвак), термин, по традиции применяемый для обозначения опухолеподобных и опухолевых, нередко кистевидных, диффузных или узловатых разрастаний нек-рых органов. По существу и по морфологии изменения, называемые С, крайне разнообразны …

Главная / Новости / Что такое строма?

Что такое строма?

Строма - это остов или поддерживающая структура внутренних органов.

Слово строма

В большинстве случаев она состоит из соединительной ткани, которая помогает органам удерживать нужное положение, а также обеспечивает им определенную защиту. И хотя строма тесно связана с органами, это - не то же самое, что паренхима, которая включает основные функциональные элементы органов.

Основная функция стромы - служить поддержкой или основой, объединяющей клетки и органы, состоящие из этих клеток.

И хотя эта поддерживающая основа не увеличивает количество функций, выполняемых органами, в действительности она помогает им более легко функционировать с максимальной эффективностью. Это возможно потому, что строма удерживает органы на месте, уменьшая напряжение, которое подавляло бы их функционирование, если бы поддерживающей основы не было.

На строму опираются многие различные органы и ткани.

Эта структура поддерживает как радужною оболочку, так и роговицу глаза. У женщин она обеспечивает удержание на месте и в некоторой степени защиту яичников. Подобным образом и щитовидная железа поддерживается благодаря наличию остова из соединительной ткани. Существует также строма, участвующая в защите и поддержке костного мозга.

Как и ткани любых других типов, поддерживающий остов может оказываться инфицированным аномальными клетками.

Когда это происходит, клетки стромы могут перерастать в опухоль. Как в случае с любой опухолью, аномальные стромальные клетки способны формировать как доброкачественные новообразования, которые могут со временем исчезать или же требовать хирургического удаления, так и злокачественные опухоли, могущие давать метастазы и угрожать здоровью органов, поддерживаемых инфицированным остовом.

В таких случаях, чаще всего необходима хирургическая операция по удалению злокачественного образования до того, как оно начнет распространяться на окружающие органы и ткани.

Так же как и любые другие ткани в организме, строма иногда подвергается стрессу, вызывающему ее ослабление.

Любая инфекция или вирус, вмешивающиеся в нормальный процесс восстановления и замещения клеток, могут оказывать неблагоприятное воздействие на остов из поддерживающей ткани и ставить под угрозу поддерживаемые им органы. К счастью, современные медицинские технологии позволяют идентифицировать случаи, когда соединительная ткань, окружающая органы, значительно ослабевает, и предпринимать соответствующие меры по ее лечению до того, как возникнут какие-либо постоянные повреждения.

Вопрос 27. Пластиды. Структура и функции хлоропластов

/. Хлоропласты

2. Тилакоиды

Что такое строма?

Тилакоидные мембраны

4. Белковые комплексы

5. Биохимический синтез в строме хлоропластов

1. Эмбриональные клетки содержат бесцветные пропластиды. В зависимости от типа ткани они развиваются : в зеленые хлоропласты;

другие формы пластид - производные от хлоропластов (фило-генетически более поздние):

Желтые или красные хромопласты;

Бесцветные лейкопласты.

Строение и состав хлоропластов. В клетках высших растений, как и у некоторых водорослей, имеется около 10-200 чечевицеобразных хлоропластов величиной всего лишь 3-10 мкм.

Хлоропласты - пластиды клеток органов высших растений, на-ходящихся на свету, таких, как :

Неодревесневший стебель (наружные ткани);

Молодые плоды;

Реже в эпидермисе и в венчике цветка.

Оболочка хлоропласта, состоящая из двух мембран, окружает бесцветную строму, которая пронизана множеством плоских замкнутых мембранных карманов (цистерн) - тилакоидов, ок-рашенных в зеленый цвет.

Поэтому клетки с хлоропластами бывают зелеными.

Иногда зеленый цвет маскируется другими пигментами хлоро-пластов (у красных и бурых водорослей) или клеточного сока (у лесного бука). Клетки водорослей содержат одну или не-сколько различной форм хлоропластов.

В хлоропластах содержатся следующие различные пигменты (в зависимости от вида растений):

Хлорофилл:

хлорофилл А (сине-зеленый) - 70% (у высших растений и

зеленых водорослей); . хлорофилл В (желто-зеленый) - 30% (там же);

Хлорофилл С, D и Е встречается реже — у других групп во-дорослей;

Каротиноиды:

оранжево-красные каротины (углеводороды);

Желтые (реже красные) ксантофиллы (окисленные кароти-ны). Благодаря ксантофиллу фикоксантину хлоропласты бу-рых водорослей (феопласты) окрашены в коричневый цвет;

Фикобилипротеиды, содержащиеся в родопластах (хлоропла-стах красных и сине-зеленых водорослей):

Голубой фикоцианин;

Красный фикоэритрин.

Функция хлоропластов: пигмент хлоропластов поглощает свет для осуществления фотосинтеза - процесса преобразования энергии света в химическую энергию органических веществ, пре-жде всего углеводов, которые синтезируются в хлоропластах из веществ, бедных энергией, - СО2 и Н2О

Прокариоты не имеют хлоропластов, но у них есть многочис-ленные тилакоиды, ограниченные плазматической мембраной :

У фотосинтезирующих бактерий:

Трубчатые или пластинчатые;

Либо в форме пузырьков или долек;

У сине-зеленых водорослей тилакоиды представляют собой уп-лощенные цистерны:

Образующие сферическую систему;

Либо параллельные друг другу;

Либо расположенные беспорядочно.

В эукариотических растительных клетках тилакоиды образуют-ся из складок внутренней мембраны хлоропласта.

Хлоропласты от края до края пронизаны длинными тилакоидами стромы, вокруг которых группируются плотно упакованные и короткие тилакоиды гран. Стопки таких тилакоидов гран видны в свето-вом микроскопе как зеленые граны величиной 0,3-0,5 мкм.

3. Между гранами тилакоиды стромы сетевидно переплетены.

Тилакоиды гран образуются из накладывающихся друг на друга выростов стромальных тилакоидов. При этом внутренние (ин-трацистернальные) пространства многих или всех тилакоидов остаются связанными между собой.

Тилакоидные мембраны толщиной 7-12 нм очень богаты бел-ком (содержание белка - около 50%, всего свыше 40 различ-ных белков).

В мембранах тилакоддов осуществляется та часть реакций фото-синтеза, с которой связано преобразование энергии, - так назы-ваемые световые реакции.

В этих процессах участвуют две хло-рофиллсодержащие фотосистемы I и II, связанные цепью транс-порта электронов, и продуцирующая АТФ мембранная АТФаза. Используя метод замораживания-скалывания, можно расщеп-лять мембраны тилакоидов на два слоя по границе, проходя-щей между двумя слоями липидов. В этом случае с помощью электронного микроскопа можно видеть четыре поверхности :

Мембрану со стороны стромы;

Мембрану со стороны внутреннего пространства тилакоида;

— внутреннюю сторону липидного монослоя, прилегающего к строме;

Внутреннюю сторону монослоя, прилегающего к внутреннему пространству.

Во всех четырех случаях видна плотная упаковка белковых час-тиц, которые в норме пронизывают мембрану насквозь, а при расслоении мембраны вырываются из того или другого липид-ного слоя.

С помощью детергентов (например, дигитонина) можно выде-лить из тилакоидных мембран шесть различных белковых ком-плексов :

Крупные ФСН-ССК-частицы, которые представляют собой гидрофобный интегральный белок мембраны. Комплекс ФСН-ССК находится в основном в тех местах, где мембраны сопри-касаются с соседним тилакоидом.

Его можно разделить:

На частицу ФСП;

И несколько одинаковых богатых хлорофиллом ССК-частиц. Это комплекс частиц, которые "собирают" кванты света и передают их энергию частице ФСП;

Частицы ФС1, гидрофобные интегральные белки мембраны;

Частицы с компонентами цепи транспорта электронов (цито-хромами), оптически неотличимые от ФС1.

Гидрофобные ин-тегральные белки мембраны;

CF0 - закрепленная в мембране часть мембранной АТФазы величиной 2-8 нм; представляет собой гидрофобный инте-гральный белок мембраны;

CF1 - периферическая и легко отделяемая гидрофильная "го-ловка" мембранной АТФазы. Комплекс CF0-CF1 действует так же, как F0-F1 в митохондриях. Комплекс CF0-CF1 нахо-дится в основном в тех местах, где мембраны не соприкасаются;

Периферический, гидрофильный, очень слабо связанный фер-мент рибулозобифосфат-карбоксилаза, в функциональном от-ношении принадлежащий строме.

Молекулы хлорофилла содержатся в частицах ФС1, ФСП и ССК.

Они амфипатические и содержат :

Гидрофильное дисковидное порфириновое кольцо, которое лежит на поверхности мембраны (в строме, во внутреннем пространстве тилакоида или с обеих сторон);

Гидрофобный остаток фитола.

Фитольные остатки лежат в гид-рофобных белковых частицах.

5. В строме хлоропластов осуществляются процессы биохимическо-го синтеза (фотосинтеза), в результате которых откладываются :

Зерна крахмала (продукт фотосинтеза);

Пластоглобулы, которые состоят из липидов (главным образом гликолипидов) и накапливают хиноны:

Пластохинон;

Филлохинон (витамин К1);

Токоферилхинон (витамин Е);

Кристаллы железосодержащего белка фитоферритина (накоп-ление железа).

Предыдущая20212223242526272829303132333435Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Строение и основные нарушения стромы яичников

Строма (от греч.στρῶμα - подстилка) - основа (остов) паренхиматозного органа животного организма, состоящая из ретикулярной соединительной ткани (интерстиция ), представляет собой мелкопетлистую трехмерную сеть, в петлях которой расположены паренхима органа, имеются способные к размножению клетки (малодифференцированные клетки-предшественницы), а также волокнистые структуры, обусловливающие её опорное значение. В строме проходят кровеносные и лимфатические сосуды; элементы стромы играют и защитную роль, так как способны к фагоцитозу (клетки ретикуло-эндотелиальной системы).

Из клеток стромы кроветворных органов развиваются красные и белые кровяные тельца, где строма выполняет функцию микроокружения для развивающихся форменных элементов крови.

Другие значения

  • Белковая основа эритроцитов.
  • У многих сумчатых и несовершенных грибов С., или ложе, - плотное сплетение гиф, на котором расположены спороношения - плодовые тела или конидиеносцы.
  • У водорослей и высших растений бесцветная белковая основа, в которую погружена строго упорядоченная система мембран (тилакоидов) - носителей пигментов.
  • Цитоплазма хлоропластов.