Что такое поверхность первого порядка. Алгебраические поверхности первого порядка. Чем отличается этот справочный материал от аналогов

§7. Плоскость как поверхность первого порядка. Общее уравнение плоскости. Уравнение плоскости, проходящей через данную точку перпендикулярно заданному вектору Введѐм в пространстве прямоугольную декартову систему координат Oxyz и рассмотрим уравнение первой степени (или линейное уравнение) относительно x, y, z: (7.1) Ax  By  Cz  D  0, A2  B2  C 2  0 . Теорема 7.1. Любая плоскость может быть задана в произвольной прямоугольной декартовой системе координат уравнением вида (7.1). Точно так же, как и в случае прямой на плоскости, справедлива теорема, обратная теореме 7.1. Теорема 7.2. Любое уравнение вида (7.1) задаѐт в пространстве плоскость. Доказательство теорем 7.1 и 7.2 можно провести аналогично доказательству теорем 2.1, 2.2. Из теорем 7.1 и 7.2 следует, что плоскость и только она является поверхностью первого порядка. Уравнение (7.1) называется общим уравнением пло-скости. Его  коэффициенты A, B, C трактуются геометрически как координаты вектора n , перпендикулярного плоскости, определяемой этим уравнением. Этот вектор  n(A, B, C) называется вектором нормали к данной плоскости. Уравнение (7.2) A(x  x0)  B(y  y0)  C (z  z0)  0 при всевозможных значениях коэффициентов A, B, C задаѐт все плоскости, про-ходящие через точку M 0 (x0 , y0 , z0) . Оно называется уравнением связки плоскостей. Выбор конкретных значений A, B, C в (7.2) означает выбор плоскости P из связки, проходящей через точку M 0 перпендикулярно  заданному вектору n(A, B, C) (рис.7.1). Пример 7.1. Написать уравнение плоскости Р, проходящей через точку   А(1, 2, 0) параллельно векторам a  (1, 2,–1), b  (2, 0, 1) .    Вектор нормали n к Р ортогонален данным векторам a и b (рис. 7.2),   поэтому за n можно взять их векторное n произведение: А    Р i j k    2 1  1 1   2 n  a  b  1 2  1  i  j 2 1  k 12 0  0 1 2 0 1 n   a    b 2i  3 j  4k . Подставим координаты Рис. 7.2. К примеру 7.1 P M0  точки M 0 и вектора n в уравнение (7.2), получим Рис. 7.1. К уравнению уравнение плоскости связки плоскостей P: 2(x  1)  3(y  2)  4z  0 или P: 2x  3y  4z  4  0 .◄ 1 Если два из коэффициентов A, B, C уравнения (7.1) равны нулю, оно задаѐт плоскость, параллельную одной из координатных плоскостей. Например, при A  B  0 , C  0 – плоскость P1: Cz  D  0 или P1: z   D / C (рис. 7.3). Она па-раллельна плоскости Oxy, ибо еѐ вектор  нормали n1(0, 0, C) перпендикулярен этой плоскости. При A  C  0 , B  0 или B  C  0 , A  0 уравнение (7.1) определяет плоскости P2: By  D  0 и P3: Ax  D  0 , параллельные координатным плоскостям Oxz и Oyz, так как   их векторы нормали n2(0, B, 0) и n3(A, 0, 0) им перпендикулярны (рис. 7.3). Если только один из коэффициентов A, B, C уравнения (7.1) равен нулю, то оно задаѐт плоскость, параллельную одной из координатных осей (или еѐ со-держащую, если D  0). Так, плоскость P: Ax  By  D  0 параллельна оси Oz, z z  n1  n  n2 P1 L P O  n3 x y O P2 y P3 x Рис. 7.4. Плоскость P: Ax  B y  D  0 , параллельная оси Oz Рис. 7.3. Плоскости параллельные плоскостям координат  поскольку еѐ вектор нормали n(A, B, 0) перпендикулярен оси Oz. Заметим, что она проходит через прямую L: Ax  By  D  0 , лежащую в плоскости Oxy (рис. 7.4). При D  0 уравнение (7.1) задаѐт плоскость, проходящую через начало координат. Пример 7.2. Найти значения параметра , при которых уравнение x  (2  2) y  (2    2)z    3  0 определяет плоскость P: а) параллельную одной из координатных плоскостей; б) параллельную одной из координатных осей; в) проходящую через начало координат. Запишем данное уравнение в виде x  (  2) y  (  2)(  1) z    3  0 . (7.3) При любом значении  уравнение (7.3) определяет некоторую плоскость, так как коэффициенты при x, y, z в (7.3) не обращаются в нуль одновременно. а) При   0 уравнение (7.3) определяет плоскость P , параллельную плоскости Oxy , P: z  3 / 2 , а при   2 оно определяет плоскость P , 2 параллельную плоскости Oyz , P: x  5/ 2 . Ни при каких значениях  плоскость P , определяемая уравнением (7.3), не параллельна плоскости Oxz , поскольку коэффициенты при x, z в (7.3) не обращаются в нуль одновременно. б) При   1 уравнение (7.3) определяет плоскость P , параллельную оси Oz , P: x  3y  2  0 . При остальных значениях параметра  оно не определяет плоскости, параллельной только одной из координатных осей. в) При   3 уравнение (7.3) определяет плоскость P , проходящую через начало координат, P: 3x  15 y  10 z  0 . ◄ Пример 7.3. Написать уравнение плоскости Р, проходящей через: а) точку M (1,  3, 2) параллельно плоскости ось Оху; б) ось Ох и точку M (2,  1, 3) .   а) За вектор нормали n к Р здесь можно взять вектор k (0, 0,1) – орт оси Oz, так как он перпендикулярен плоскости Оху. Подставим координаты точки  M (1,  3, 2) и вектора n в уравнение (7.2), получим уравнение плоскости P: z 3  0.   б) Вектор нормали n к Р ортогонален векторам i (1, 0, 0) и OM (2,  1, 3) ,  поэтому за n можно взять их векторное произведение:    i j k       n  i  OM  1 0 0   j 12 03  k 12 01   3 j  k . 2 1 3  Подставим координаты точки О и вектора n в уравнение (7.2), получим уравнение плоскости P:  3(y  0)  (z  0)  0 или P: 3 y  z  0 .◄ 3

1.7.1. Плоскость.

Рассмотрим в декартовом базисе произвольную плоскость Р и вектор нормали (перпендикулярный) к ней `n (А, В, С). Возьмем в этой плоскости произвольную фиксированную точку М0(х0, у0, z0) и текущую точку М(х, у, z).

Очевидно, что ?`n = 0 (1.53)

(см.(1.20) при j = p /2). Это уравнение плоскости в векторной форме. Переходя к координатам, получим общее уравнение плоскости

А(х – х0) + В(у – у0) + С(z – z0) = 0 ?Ах + Ву + Сz + D = 0 (1.54).

(D = –Ах0– Ву0 – Сz0; А2 + В2 + С2 ? 0).

Можно показать, что в декартовых координатах каждая плоскость определяется уравнением первой степени и, обратно, каждое уравнение первой степени определяет плоскость, (т.е. плоскость есть поверхность первого порядка и поверхность первого порядка есть плоскость).

Рассмотрим некоторые частные случаи расположения плоскости, заданной общим уравнением:

А = 0 – параллельна оси Ох; В = 0 – параллельна оси Оу; С = 0 – параллельна оси Оz. (Такие плоскости, перпендикулярные одной из координатных плоскостей, называют проектирующими); D = 0 – проходит через начало координат; А = В = 0 – перпендикулярна оси Оz (параллельна плоскости хОу); А = В = D = 0 – совпадает с плоскостью хОу (z = 0). Аналогично анализируются все остальные случаи.

Если D ? 0, то, разделив обе части (1.54) на -D, можно привести уравнение плоскости к виду: (1.55),

а = – D /А, b = –D/ В, с =–D /С. Соотношение (1.55) называетcя уравнением плоскости в отрезках; а, b, с – абсцисса, ордината и аппликата точек пересечения плоскости с осями Ох, Оу, Оz, а |a|, |b|, |c| – длины отрезков, отсекаемых плоскостью на соответствующих осях от начала координат.

Умножая обе части (1.54) на нормирующий множитель (mD xcosa + ycosb + zcosg – p = 0 (1.56)

где cosa = Аm, cosb = Вm, cosg = Сm – направляющие косинусы нормали к плоскости, р – расстояние до плоскости от начала координат.

Рассмотрим основные соотношения, используемые в расчетах. Угол между плоскостями А1х + В1у + С1z + D1 = 0 и А2х + В2у + С2z + D2 = 0 легко определить как угол между нормалями этих плоскостей `n1 (А1, В1, С1) и

`n2 (А2, В2, С2): (1.57)

Из (1.57) легко получить условие перпендикулярности

А1А2 + В1 В2 + С1 С2 = 0 (1.58)

и параллельности (1.59) плоскостей и их нормалей.

Расстояние от произвольной точки М0(х0, у0, z0) до плоскости (1.54)

определяется выражением: (1.60)

Уравнение плоскости, проходящей через три заданные точки М1(х1, у1, z1), М2(х2, у2, z2), М3(х3, у3, z3) удобнее всего записать используя условие компланарности (1.25) векторов где М(х, у, z) – текущая точка плоскости.

(1.61)

Приведем уравнение пучка плоскостей (т.е.

Множества плоскостей, проходящих через одну прямую) – его удобно использовать в ряде задач.

(А1х + В1у + С1z + D1) + l(А2х + В2у + С2z + D2) = 0 (1.62)

Где l Î R, а в скобках - уравнения двух любых плоскостей пучка.

Контрольные вопросы.

1) Как проверить, что данная точка лежит на поверхности, заданной данным уравнением?

2) Каков характерный признак, отличающий уравнение плоскости в декартовой системе координат от уравнения других поверхностей?

3) Как расположена плоскость относительно системы координат, если в её уравнении отсутствует: а) свободный член; б) одна из координат; в) две координаты; г) одна из координат и свободный член; д) две координаты и свободный член?

1) Даны точки М1(0,-1,3) и М2(1,3,5). Написать уравнение плоскости, проходящей через точку М1 и перпендикулярной к вектору Выбрать верный ответ:

а) ; б) .

2) Найти угол между плоскостями и . Выбрать верный ответ:

а) 135о, б) 45о

1.7.2. Прямая. Плоскости, нормали которых не коллинеарны, или пересекаются, однозначно определяя прямую как линию их пересечения, что и записывается следующим образом:

Через эту прямую можно провести бесконечно много плоскостей (пучок плоскостей (1.62)), в том числе и проектирующие ее на координатные плоскости. Чтобы получить их уравнения, достаточно преобразовать (1.63), исключив из каждого уравнения по одной неизвестной и приведя их, например, к виду (1.63`).

Поставим задачу – провести через точку М0(х0,у0,z0) прямую, параллельную вектору `S (l, m, n) (его называют направляющим). Возьмем на искомой прямой произвольную точку М(х,у,z). Векторы и должны быть коллинеарны, откуда получаем канонические уравнения прямой.

(1.64) или (1.64`)

где cosa, cosb, cosg – направляющие косинусы вектора `S. Из (1.64) легко получить уравнение прямой, проходящей через заданные точки М1(х1, у1, z1) и М2(х2, у2, z2) (она параллельна )

Или (1.64``)

(Значения дробей в (1.64) равны для каждой точки прямой и могут быть обозначены через t, где tR. Это позволяет ввести параметрические уравнения прямой

Каждому значению параметра t соответствует набор координат х, у, z точки на прямой или (иначе) - значения неизвестных, удовлетворяющих уравнениям прямой).

Используя уже известные свойства векторов и операций над ними и канонические уравнения прямой легко получить следующие формулы:

Угол между прямыми: (1.65)

Условие параллельности (1.66).

перпендикулярности l1l2 + m1m2 + n1n2 = 0 (1.67) прямых.

Угол между прямой и плоскостью (легко получить, найдя угол между прямой и нормалью к плоскости, составляющий в сумме с искомым p/2)

(1.68)

Из (1.66) получаем условие параллельности Al + Bm + Cn = 0 (1.69)

и перпендикулярности (1.70) прямой и плоскости. Необходимое и достаточное условие нахождения двух прямых в одной плоскости легко получить из условия компланарности (1.25).

(1.71)

контрольные вопросы.

1) Каковы способы задания прямой линии в пространстве?

1) Написать уравнения прямой, проходящей через точку А(4,3,0) и параллельной вектору Указать верный ответ:

а) ; б) .

2) Написать уравнения прямой, проходящей через точки А(2,-1,3) и В(2,3,3). Указать верный ответ.

а) ; б) .

3) Найти точку пересечения прямой с плоскостью: , . Указать верный ответ:

а) (6,4,5); б) (6,-4,5).

1.7.3. Поверхности второго порядка. Если линейное уравнение в трехмерном декартовом базисе однозначно определяет плоскость, любое нелинейное уравнение, содержащее х, у, z описывает какую – то иную поверхность. Если уравнение имеет вид

Ах2 + Ву2 + Cz2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Kz + L = 0, то оно описывает поверхность второго порядка (общее уравнение поверхности второго порядка). Выбором или преобразованием декартовых координат уравнение можно максимально упростить, приведя к одной из следующих форм, описывающих соответствующую поверхность.

1. Канонические уравнения цилиндров второго порядка, образующие которых параллельны оси Oz, а направляющими служат соответствующие кривые второго порядка, лежащие в плоскости хОу:

(1.72), (1.73), у2 = 2рх (1.74)

эллиптический, гиперболический и параболический цилиндры соответственно.

(Напомним, что цилиндрической называют поверхность, полученную перемещением прямой, называемой образующей, параллельно самой себе. Линию пересечения этой поверхности с плоскостью, перпендикулярной образующей, называют направляющей – она определяет форму поверхности).

По аналогии можно записать уравнения таких же цилиндрических поверхностей с образующими, параллельными оси Оу и оси Oх. Направляющую можно задать, как линию пересечения поверхности цилиндра и соответствующей координатной плоскости, т.е. системой уравнений вида:

2. Уравнения конуса второго порядка с вершиной в начале координат:

(1.75)

(осями конуса служат оси Oz, Oy и Ох соответственно)

3. Каноническое уравнение эллипсоида: (1.76);

Частными случаями являются эллипсоиды вращения, например – поверхность, полученная вращением эллипса вокруг оси Оz (При

а > с эллипсоид сжат, при a х2 + у2+ z2 + = r2 – уравнение сферы радиуса r с центром в начале координат).

4. Каноническое уравнение однополостного гиперболоида

(знак “ – ” может стоять перед любым из трех слагаемых левой части – это изменяет только положение поверхности в пространстве). Частные случаи – однополостные гиперболоиды вращения, например – поверхность, полученная вращением гиперболы вокруг оси Oz (мнимой оси гиперболы).

5. Каноническое уравнение двухполостного гиперболоида

(знак “ – ” может стоять перед любым из трех слагаемых левой части).

Частные случаи – двухполостные гиперболоиды вращения, например – поверхность, полученная вращением гиперболы вокруг оси Оz (действительной оси гиперболы).

6. Каноническое уравнение эллиптического параболоида

(p >0, q >0) (1.79)

7. Каноническое уравнение гиперболического параболоида

(p >0, q >0) (1.80)

(переменная z может поменяться местами с любой из переменных х и у – изменится положение поверхности в пространстве).

Отметим, что представление об особенностях (форме) этих поверхностей легко получить, рассматривая сечения этих поверхностей плоскостями, перпендикулярными осям координат.

контрольные вопросы.

1) Какое множество точек в пространстве определяет уравнение ?

2) Каковы канонические уравнения цилиндров второго порядка; конуса второго порядка; эллипсоида; однополостного гиперболоида; двухполостного гиперболоида; эллиптического параболоида; гиперболического параболоида?

1) Найти центр и радиус сферы и указать верный ответ:

а) С(1,5;-2,5;2), ; б) С(1,5;2,5;2), ;

2) Определить вид поверхности, заданной уравнениями: . Указать верный ответ:

а) однополостный гиперболоид; гиперболический параболоид; эллиптический параболоид; конус.

б) двухполостный гиперболоид; гиперболический параболоид; эллиптический параболоид; конус.

Лекция 2. Плоскость как поверхность первого порядка. Уравнения плоскости и их исследование. Прямая в пространстве, взаимное расположение прямых в пространстве, плоскости и прямой в пространстве. Прямая на плоскости, уравнения прямой на плоскости, расстояние от точки до прямой на плоскости. Кривые второго порядка; вывод канонических уравнений, исследование уравнений и построение кривых. Поверхности II порядка, исследование канонических уравнений поверхностей. Метод сечений. 1

Элементы аналитической геометрии § 1. Плоскость. Имеем OXYZ и некоторую поверхность S F(x, y, z) = 0 z x (S) О y Определение 1: уравнение с тремя переменными называется уравнением поверхности S в пространстве, если этому уравнению удовлетворяют координаты каждой точки, лежащей на поверхности и не удовлетворяют координаты ни одной точки не лежащей на ней. 2

Пример. Уравнение (x - a)2 + (y - b)2 + (z - c)2 = R 2 (R > 0) определяем сферу с центром в точке C(a, b, c) и радиусом R. M M(x, y, z) – переменная точка M ϵ (S) |CM| = R C 3

Определение 2: Поверхность S называется поверхностью n-того порядка, если в некоторой декартовой системе координат она задается алгебраическим уравнением n-той степени F(x, y, z) = 0 (1) В примере (S) - окружность, поверхность второго порядка. Если S - поверхность n-того порядка, то F(x, y, z) - многочлен n-той степени относительно (x, y, z) Рассмотрим единственную поверхность 1 -го порядка – плоскость. Составим уравнение плоскости проходящей через точку M (x , y , z), с вектором нормали 4

Пусть M(x, y, z) - это произвольная (текущая) точка плоскости. M M 0 О α или в координатной форме: (2) Уравнение (2) - уравнение плоскости проходящей через точку М с данным вектором нормали. 5

D (*) (3) - полное уравнение плоскости Неполное уравнение плоскости. Если в уравнении (3) несколько коэффициентов (но не A, B, C одновременно) = 0, то уравнение называется неполным и плоскость α имеет особенности в расположении. Например если D = 0, то α проходит через начало координат. 6

Расстояние от точки М 1 до плоскости α М 1(x 1, y 1, z 1) α: M 1 d α M 0 приложим к точке M 0 K 7

- расстояние от точки M 1 до плоскости α Уравнение плоскости «в отрезках» Составим уравнение плоскости отсекающей на координатных осях ненулевые отрезки с C(0, 0, c) величинами a, b, c. В качестве возьмем B(0, b, 0) Составим уравнение для т. A с A(a, 0, 0) 8

-уравнение плоскости α "в отрезках" -уравнение плоскости, проходящей через точку А, перпендикулярно вектору нормали 9

§ 2. Общее уравнение прямой. Прямую в пространстве можно задать пересечением 2 -х плоскостей. (1) уравнение прямой Система вида (1) определяет прямую в пространстве, если коэффициенты A 1, B 1, C 1 одновременно непропорциональны A 2, B 2, C 2. 10

Параметрические и канонические уравнения прямой -произвольная точка прямой точка M M 0 Параметрическое уравнение t - параметр 11

Исключив t получим: - каноническое уравнение Система (3) определяет движение материальной точки, прямолинейное и равномерное из начального положения M 0(x 0, y 0, z 0) со скоростью в направлении вектора. 12

Угол между прямыми в пространстве. Условия параллельности и перпендикулярности. Пусть в пространстве две прямые L 1, L 2 заданы своими каноническими уравнениями: Тогда задача определения угла между этими прямыми сводится к определению угла

их направляющими векторами: Пользуясь определением скалярного произведения и выражением в координатах указанного скалярного произведения и длин векторов q 1 и q 2, получим для нахождения: 15

Условие параллельности прямых l 1 и l 2 соответствует коллинеарности q 1 и q 2, заключается в пропорциональности координат этих векторов, т. е. имеет вид: Условие перпендикулярности следует из определения скалярного произведения и его равенства нулю (при cos = 0) и имеет вид: l 1 l 2 + m 1 m 2 + n 1 n 2 = 0. 16

Угол между прямой и плоскостью: условия параллельности и перпендикулярности прямой и плоскости Рассмотрим плоскость P, заданную общим уравнением: Ах + By + Cz + D = 0, и прямую L, заданную каноническим уравнением: 17

Т. к. угол между прямой L и плоскостью П является дополнительным к углу между направляющим вектором прямой q = (l, m, n) и нормальным вектором плоскости n = (А, В, С), то из определения скалярного произведения q n = q n cos и равенства cos = sin (= 90 -), получим: 18

Условие параллельности прямой L и плоскости П (включающее в себя принадлежность L к П) эквивалентно условию перпендикулярности векторов q и n и выражается = 0 скалярного произведения этих векторов: q n = 0: Аl + Bm + Cn = 0. Условие перпендикулярности прямой L и плоскости П эквивалентно условию параллельности векторов n и q и выражается пропорциональностью координат этих векторов: 19

Условия принадлежности двух прямых к одной плоскости Две прямые в пространстве L 1 и L 2 могут: 1) пересекаться; 2) быть параллельными; 3) скрещиваться. В первых двух случаях прямые L 1 и L 2 лежат в одной плоскости. Установим условие принадлежности к одной плоскости двух прямых, заданных каноническими уравнениями: 20

Очевидно, что для принадлежности двух указанных прямых к одной плоскости необходимо и достаточно, чтобы три вектора = (х2 - х1, у2 - у1, z 2 - z 1); q 1 = (l 1, m 1, n 1) и q 2 = (l 2, m 2, n 2), были компланарны, для чего в свою очередь необходимо и достаточно, чтобы смешанное произведение указанных трех векторов = 0. 21

Записывая смешанные произведения указанных векторов в координатах получаем необходимое и достаточное условие принадлежности двух прямых L 1 и L 2 к одной плоскости: 22

Условие принадлежности прямой к плоскости Пусть есть прямая и плоскость Ах + Ву + Сz + D = 0. Эти условия имеют вид: Ах1 + Ву1 + Сz 1 + D = 0 и Аl + Вm + Сn = 0, первое из которых означает, что точка М 1(х1, у1, z 1), через которую проходит прямая, принадлежит плоскости, а второе – условие параллельности прямой и плоскости. 23

Кривые второго порядка. § 1. Понятие об уравнении линии на плоскости. Уравнение f (x, y) = 0 называется уравнением линии L в выбранной системе координат, если ему удовлетворяют координаты любой точки, лежащей на линии, и не удовлетворяют координаты ни одной точки, не лежащей на ней. 24

Src="https://present5.com/presentation/-127141277_437875303/image-25.jpg" alt="Пример: (x - a)2 + (y - b)2 = R 2 (R > 0)"> Пример: (x - a)2 + (y - b)2 = R 2 (R > 0) – уравнение окружности радиуса R и центром в точке С(a, b). Если 1.) 25

Линия L называется линией n-того порядка, если в некоторой декартовой системе координат она задается алгебраическим уравнением n-той степени относительно x и y. Мы знаем единственную линию 1 -го порядка – прямую: Ax + By + D = 0 Мы будем рассматривать кривые 2 -го порядка: эллипс, гиперболу, параболу. Общее уравнение линий 2 -ого порядка имеет вид: Ax 2 + By 2 + Cxy + Dy + Ex + F = 0 26

Эллипс (Э) Определение. Эллипс – множество всех точек плоскости, сумма расстояний которых до двух фиксированных точек плоскости F 1 и F 2, называемых фокусами, есть величина постоянная и большая расстояния между фокусами. Обозначим постоянную 2 а, расстояние между фокусами 2 с Проведем ось Х через фокусы, (а > с, а > 0, с > 0). ось Y через середины фокусного расстояния. Пусть М – произвольная точка эллипса, т. М ϵ Э r 1 + r 2 = 2 a (1), где r 1, r 2 – фокальные 27 радиусы Э.

Запишем (1) в координатной форме: (2) Это уравнение эллипса в выбранной системе координат. Упрощая (2) получим: b 2 = a 2 - c 2 (3) – каноническое уравнение эллипса. Можно показать, что (2) и (3) эквивалентны: 28

Исследование формы эллипса по каноническому уравнению 1) Эллипс – кривая 2 -го порядка 2) Симметрия эллипса. т. к. x и y входят в (3) лишь в четных степенях, то эллипс имеет 2 оси и 1 центр симметрии, которые в выбранной системе координат совпадают с выбранными осями координат и точкой О. 29

3) Расположение эллипса Т. е. весь Э расположен внутри прямоугольника, стороны которого x = ± a и y = ± b. 4) Пересечение с осями. A 1(-a; 0); A 2(a; 0); С ОХ: вершины эллипса С ОУ: B 1(0; b); B 2(0; -b); В силу симметрии эллипса рассмотрим его поведение (↓) лишь в I четверти. 30

Src="https://present5.com/presentation/-127141277_437875303/image-31.jpg" alt="Разрешив (3) относительно y получим: в I четверти x > 0 и эллипс убывает."> Разрешив (3) относительно y получим: в I четверти x > 0 и эллипс убывает. Вывод: Э – замкнутая кривая, овальная, имеющая четыре вершины. План построения Э. 1) Строим прямоугольник со сторонами 2 a, 2 b 2) Вписываем выпуклую овальную линию 31

Гипербола (Г) Определение: Г – множество всех точек плоскости, модуль разности расстояний которых до 2 -х фиксированных точек плоскости F 1 , F 2 есть величина постоянная и

Упрощая (1): (2) – каноническое уравнение Г. (1) и (2) – эквивалентны. Исследование гиперболы по каноническому уравнению 1) Г- линия 2 -го порядка 2) Г имеет две оси и один центр симметрии, которые в нашем случае совпадают с координатными осями и началом координат. 3) Расположение гиперболы. 34

Гипербола расположена вне полосы между прямыми x = a, x = -a. 4) Точки пересечения с осями. OX: OY: не имеет решений A 1(-a; 0); A 2(a; 0) – действительные вершины Г B 1(0; b); B 2(0; -b) – мнимые вершины Г 2 a – действительная ось Г 2 b – мнимая ось Г 35

5) Асимптоты гиперболы. В силу симметрии Г рассмотрим ее часть в I четверти. Разрешив (2) относительно y, получим: уравнение Г в I четверти x ≥ 0 Рассмотрим прямую: т. к. в I четверти x>0, то т. е. в I четверти при одной и той же абсциссе, ордината прямой > ординаты соответствующей точки Г, т. е. в I четверти Г лежит ниже этой прямой. Вся Г лежит внутри вертикального угла со сторонами 36

6) Можно показать, что в I ч. Г возрастает 7) План построения Г а) строим прямоугольник 2 a, 2 b б) проводим его диагонали в) отметим А 1, А 2 – действительные вершины Г и 38 впишем эти ветви

Парабола (П) Рассмотрим d (директрису) и F (фокус) на плоскости. Определение. П – множество всех точек плоскости, равноудаленных от прямой d и точки F (фокус) 39

d-директриса F-фокус XOY точка М П тогда, |MF| = |MN| (1) уравнение П, выбранной в системе координат Упрощая (1) получим y 2 = 2 px (2) – каноническое уравнение П. (1) и (2) эквивалентны 40

Исследование П по каноническому уравнению x 2=2 py x 2=-2 py y 2=2 px y 2=-2 px 41

§ 4. Цилиндры. Цилиндрические поверхности с образующими, параллельными координатным осями Через точку х линии L проведем прямую параллельную оси OZ. Поверхность, образованная этими прямыми называется цилиндрической поверхностью или цилиндром (Ц). Любая прямая параллельная оси OZ называется образующей. l - направляющая цилиндрической поверхности плоскости XOY. Z(x, y) = 0 (1) 42

Пусть М(x, y, z) – произвольная точка цилиндрической поверхности. Спроецируем ее на L. M 0 ϵ L => Z(x 0, y 0) = 0 (2) x = x 0 => Z(x, y) = 0 Mϵ Ц y = y 0 M ϵL 0 то есть координаты М удовлетворяют (1) очевидно, что если М Ц, то она не проектируется в точку М 0 ϵ L и следовательно, координаты М не будут удовлетворять уравнению (1), которое определяет Ц с образующей параллельной оси OZ в пространстве. Аналогично можно показать, что: Ф(x, z) = 0 в пространстве Ц || OY 43 (y, z) = 0 определяет в пространстве Ц || OX

Проекция пространственной линии на координатной плоскости Линию в пространстве можно задать параметрически и пересечением поверхностей. Одну и ту же линию можно задать ∩ различных поверхностей. Пусть пространственная линия L задается ∩ двух поверхностей α: S 1: Ф 1(x, y, z) = 0 S 2: Ф 2(x, y, z) = 0 уравнение L Ф 1(x, y, z) = 0 (1) Ф 2(x, y, z) = 0 Найдем проекцию L на плоскость XOY из уравнения (1) исключаем Z. Получим уравнение: Z(x, y) = 0 – в пространстве это уравнение Ц с образующей || OZ и направляющей L. 46

Проекция: L xy Z(x, y) = 0 Z=0 Поверхности второго порядка Эллипсоид – каноническое уравнение поверхности имеет вид: 1) Эллипсоид – поверхность второго порядка. 2) X, Y, Z входят в уравнение лишь в четных степенях => поверхность имеет 3 плоскости и 1 центр симметрии, которые в выбранной системе координат совпадают с координатными плоскостями и началом координат. 47

3) Расположение эллипсоида Поверхность заключена между || плоскостями с уравнениями x = a, x = -a. Аналогично т. е. вся поверхность заключена внутри прямоугольного параллелепипеда. х = ± а, y = ± b, z = ± с. Будем исследовать поверхность методом сечений – пересекая поверхность координатными плоскостями || координатным. В сечении будем получать линии, по форме которых будем судить о форме поверхности. 48

Пересечем поверхность плоскостью XOY. В сечении получим линию. - эллипс a и b – полуоси Аналогично с плоскостью YOZ -эллипс с полуосями b и с Плоскость || XOY Если h(0, с), то оси эллипса убывают от a и b до 0. 49

a = b = с - сфера Параболоиды а) Гиперболический параболоид – поверхность с каноническим уравнением: 1) Поверхность второго порядка 2) Так как x, y входят в уравнение лишь в четных степенях, то поверхность имеет плоскости симметрии, которые при данном выборе координат совпадают с 50 плоскостями XOZ, YOZ.

3) исследуем поверхность методом сечения седло пл. XOZ В сечении парабола симметричная оси OZ, восходящая. пл. YOZ 51

Src="https://present5.com/presentation/-127141277_437875303/image-53.jpg" alt="пл. ||XOY при h > 0 гиперболы, с действительной полуосью вдоль OX, при h"> пл. ||XOY при h > 0 гиперболы, с действительной полуосью вдоль OX, при h z ≥ 0, то есть, вся поверхность расположена над XOY. 4) исследуем поверхность методом сечения 53

б) Двуполостный гиперболоид 1) поверхность второго порядка 2) имеет 3 плоскости и 1 центр симметрии 3) расположение поверхности x 2 ≥ a 2 ; |x| ≥ a ; (a, b, c > 0) Поверхность состоит из двух частей, расположенных вне полосы между плоскостями с уравнениями x = a, x = -a 4) исследуем методом сечений (Самостоятельно!) 57

Конус второго порядка Конусом второго порядка называется поверхность, каноническое уравнение которой имеет вид: 1) поверхность второго порядка 2) имеет 3 плоскости и 1 центр симметрии 3) исследуем методом сечений пл. XOY 58

Src="https://present5.com/presentation/-127141277_437875303/image-59.jpg" alt="пл. ||XOY |h| –>∞ от 0 до ∞ пл. YOZ пара прямых, проходящих через"> пл. ||XOY |h| –>∞ от 0 до ∞ пл. YOZ пара прямых, проходящих через начало координат пл. XOZ пара прямых, проходящих через начало координат 59

60

В пространстве аналитическая геометрия изучает поверхности, которые в прямоугольных декартовых координатах определяются алгебраическими уравнениями первой, второй и т.д. степени относительно X,Y,Z:

Ax+By+Cz+D=0 (1)

А x²+By²+Cz²+2Dxy+2Exz+2Fyz+2Mx+2Ny+2Lz+K=0 (2)

и т.п. Порядок уравнения называется порядком поверхности им определяемой. Мы уже видели, что уравнение первого порядка (линейное) (1) всегда задаёт плоскость - это единственная поверхность первого порядка. Поверхностей второго порядка уже много. Рассмотрим наиболее важные из них.

§2. Цилиндрические поверхности с образующими, параллельными одной из координатных осей.

Пусть в плоскости XОY, например, задана некоторая линия L, её уравнение есть F(x,y)=0 (1) . Тогда множество прямых, параллельных оси oz (образующие) и проходящих через точки на L, образуют поверхность S, называемую цилиндрической поверхностью.

Покажем, что уравнение (1), не содержащее переменной z, и есть уравнение этой цилиндрической поверхности S. Возьмём произвольную точку М(x,y,z), принадлежащую S. Пусть образующая, проходя через М пересекает L в точке N. Точка N имеет координаты N(x,y,0), они удовлетворяют уравнению (1), т.к. (·)N принадлежит L. Но тогда и координаты (x,y,z,) удовлетворяют (1), т.к. оно не содержит z. Значит, координаты любой точки цилиндрической поверхности S удовлетворяют уравнению (1). Значит, F(x,y)=0 - уравнение этой цилиндрической поверхности. Кривая L называется направляющей (кривой) цилиндрической поверхности. Заметим, что в пространственной системе L должна задаваться, вообще-то, двумя уравнениями F(x,y)=0 , z=0, как линия пересечения.

Примеры:


Направляющими в плоскости хоу являются эллипс, парабола, гипербола. Очевидно, уравнения F=(y,z)=0 и F(x,z)=0 задают соответственно цилиндрические поверхности с образующими параллельными оси OX и OY. Их направляющие лежат в плоскостях YOZ и XOZ соответственно.

Замечание. Цилиндрическая поверхность не обязательно является поверхностью второго порядка. Например, есть цилиндрическая поверхность 3го порядка, а уравнениеy=sin(x) задаёт синусоидальный цилиндр, которому никакого порядка не приписывают, это вообще, не алгебраическая поверхность.

§3. Уравнение поверхности вращения.

Некоторые поверхности 2го порядка являются поверхностями вращения. Пусть в плоскости YOZ лежит некоторая кривая L F(y,z)=0(1). Выясним, каково будет уравнение поверхности S, образованной вращением кривой (1) вокруг оси oz.

Возьмем на поверхности S произвольную точку M(x,y,z). Ее можно считать полученной из (.) N принадлежащей L , тогда аппликаты точек M и N равны (=z). Ордината точки N является тут радиусом вращения, потому .Но С(0,0,z) и потому . Но точка N лежит на кривой и поэтому её координаты ей удовлетворяют. Значит (2) . Уравнению (2) удовлетворяют координаты поверхности вращения S. Значит (2) и есть уравнение поверхности вращения. Знаки «+» или «-» берутся в зависимости от того в какой части плоскости YOZ размещается кривая (1), где у>0 или .

Итак, правило: Чтобы найти уравнение поверхности, образованной вращением кривой L вокруг оси OZ, нужно в уравнении кривой заменить переменную у

Аналогично составляются уравнения поверхностей вращения вокруг оси OX и OY.

Поверхность

Поверхность, определенная некоторым уравнением в данной системе координат есть геометрическое место точек, координаты которых удовлетворяют данному уравнению F(x; y; z) = 0.

Линия в пространстве

Если уравнения F(x; y; z) = 0 и Ф (x; y; z) = 0 определяют некоторую поверхность, то линия L (x; y; z) = 0 может быть определена как геометрическое место точек общих для обеих поверхностей (линия пересечения поверхностей)

Плоскость, как поверхность первого порядка

Существует, как минимум, три определения плоскости:

1) Плоскость есть поверхность, которая полностью каждую прямую, соединяющую любые две ее точки.

2) Плоскость есть множество точек пространства, равноудаленных от данных двух точек.

А теперь об одной из форм уравнения плоскости.

Во-первых, со школьных времен известно; «любые не совпадающие и не лежащие на одной прямой три точки определяют плоскость, причем единственную». Не случайно абсолютно устойчив (т.е. «не качается») стул на трех ножках и не устойчив («качается») стул на двух и более чем на трех ножках. Во-вторых, вектор нормали к плоскости ориентирует ее в пространстве (см. Рис.31)


Пусть искомая плоскость р проходит через точку М 0 перпендикулярно вектору, тогда

Во-первых, вектор есть результат векторного произведения вектора М 0 М 2 на вектор М 0 М 1

Во-вторых, вектор перпендикулярен и вектору М 0 М 2 , и вектору М 1 М 2 . Откуда, из условия ортогональности векторов получаем, что скалярное произведение на вектор М 0 М 2 (или на вектор М 0 М 1) равно нулю. Если точка М 2 имеет координаты (x; y; z), то скалярное произведение вектора на вектор М 0 М 2 должно быть равно нулю. С учетом того, что вектор М 0 М 2 определяется как

получаем, что

Уравнение плоскости, проходящей через данную точку и перпендикулярной данному вектору

Пример 30 (получение уравнения плоскости)

Найти уравнение плоскости, проходящей через точку М 0 (1; 1; 1) перпендикулярно вектору

Решение

В нашем случае

А=1, В= 1 и С =1;

x 0 = 2, y 0 = 2, z 0 = 3,

следовательно, уравнение плоскости имеет вид

Или, окончательно,

Ответ

Искомая плоскость определяется уравнением

Общее уравнение плоскости

Вообще, любое уравнение вида

A x + B y + C z + D = 0

определяет плоскость (где А, В и С - координаты вектора-нормали к плоскости). Такая форма уравнения плоскости получила название «общее уравнение плоскости».

Неполные уравнения плоскости

Пусть плоскость задана своим общим уравнением

A x + B y + C z + D = 0, (*)

1) если D = 0, то (*) определяет плоскость, проходящую через начало координат;

2) если А = 0, то B y + C z + D = 0 и имеем плоскость, параллельную оси Ox (т.к.);

3) если В = 0, то A x + C z + D = 0 и имеем плоскость, параллельную оси Oy (т.к.);

4) если C = 0, то A x + B y + D = 0 и имеем плоскость, параллельную оси Oz (т.к.);

5) А = 0; В = 0, то C z + D = 0 и имеем плоскость, параллельную плоскости Oxy;

6) A = 0; C = 0, то В y + D = 0 и имеем плоскость, параллельную плоскости Oxz;

7) B = 0; C = 0, то A x + D = 0 и имеем плоскость, параллельную плоскости Oyz;

8) A = 0, B = 0, D = 0, то С z = 0 - это плоскость Oxy;

9) A = 0, C = 0, D = 0, то B y = 0 - это плоскость Oxz;

10) B = 0, C = 0, D = 0, то A z = 0 - это плоскость Oyz.

Точно так же, как было ранее с общим уравнением прямой на плоскости , из общего уравнения можно получить и другие формы уравнения плоскости. Одна из этих форм уравнение плоскости в отрезках.

Из общего уравнения плоскости

A x + B y + C z + D = 0

Получается уравнение плоскости в отрезках


Последнее выражение получило название «уравнение плоскости в отрезках»

Уравнение плоскости в отрезках

где a, b и с - величины отрезков, отсекаемых плоскостью на осях Ox, Oy и Oz соответственно.

Пусть две плоскости заданы своими общими уравнениями

A 1 x + B 1 y + C 1 z + D 1 = 0 и

A 2 x + B 2 y + C 2 z + D 2 = 0.

Т.е., векторы-нормали имеют координаты

Для плоскости

Для плоскости

И пусть плоскости не совпадают и не параллельны (см. Рис.32)

Угол между двумя плоскостями

Угол между плоскостями определяется углом между нормальными векторами, а как найти угол между векторами мы уже знаем:

если ц - угол между векторами, то это же и угол между плоскостями р 1 и р 2

Откуда два важных следствия (условия)

Условие перпендикулярности двух плоскостей

Две плоскости перпендикулярны при условии, что

A 1 A 2 + B 1 B 2 + C 1 C 2 = 0.